高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
排序:
相关度
发表时间
每页显示:
10
20
30
50
基于K-L散度的最大后验弧主导的混淆网络生成算法
王欢良, 韩纪庆, 郑铁然, 李海峰
2008, 30(5): 1109-1112. doi: 10.3724/SP.J.1146.2006.01760  刊出日期:2008-05-19
关键词: 语音识别; 混淆网络; Lattice; 混淆网络生成; K-L散度
为快速生成高质量混淆网络,该文提出一种最大后验弧主导的快速生成算法。它只需遍历一遍Lattice,具有线性时间复杂度。采用K-L散度(Kullback-Leibler Divergence,KLD)来度量弧标号之间的发音相似性,改善了混淆网络生成中弧对齐的准确性。实验结果显示,所提算法在生成速度上和Xue的快速算法是可比的,而生成质量更好。通过采用KLD作为弧标号相似性测度,生成混淆网络的质量得到了进一步提高。