高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
排序:
相关度
发表时间
每页显示:
10
20
30
50
基于监督学习的Takagi Sugeno Kang模糊系统图像融合方法研究
李奕, 吴小俊
2014, 36(5): 1126-1132. doi: 10.3724/SP.J.1146.2013.00400  刊出日期:2014-05-19
关键词: 图像融合, 监督学习, Takagi Sugeno Kang(TSK)模糊系统
该文针对图像融合领域内难于对先验知识加以利用的问题提出一种新的有监督学习的Takagi Sugeno Kang (TSK)模糊系统图像融合方法。该方法通过引入TSK模糊系统构建标准图像融合图像库进行学习,将学习准则记录下来形成融合模型,并指导新的图像融合过程。不同于传统方法,该方法可以有效地避免模型参数择优的难题,在融合图像质量和适用范围方面表现出一定的优势。从单一类型图像融合和多种类型图像融合两个角度进行了实验研究,实验结果说明该方法的有效性。
交织法构造高斯整数零相关区序列集
刘凯, 姜昆
2017, 39(2): 328-334. doi: 10.11999/JEIT160276  刊出日期:2017-02-19
关键词: 移位序列, 高斯整数, 交织法, 零相关区
该文提出一种新的移位序列集的构造方法,并基于这些新的移位序列,通过交织周期为N的完备高斯整数序列,得到一类具有灵活相关区长度的周期为2N的高斯整数零相关区序列集。这类新的序列集的参数能接近甚至达到Tang-Fan-Matsuji界,所以序列集的性能是最佳的或者几乎最佳的。高斯整数零相关区序列集可为高速准同步扩频系统提供更多的地址选择空间。
ZUC序列密码算法的选择IV相关性能量分析攻击
严迎建, 杨昌盛, 李伟, 张立朝
2015, 37(8): 1971-1977. doi: 10.11999/JEIT141604  刊出日期:2015-08-19
关键词: 密码学, 序列密码, ZUC, 能量分析攻击, 评估
为了分析ZUC序列密码算法在相关性能量分析攻击方面的免疫能力,该文进行了相关研究。为了提高攻击的针对性,该文提出了攻击方案的快速评估方法,并据此给出了ZUC相关性能量分析攻击方案。最后基于ASIC开发环境构建仿真验证平台,对攻击方案进行了验证。实验结果表明该方案可成功恢复48 bit密钥,说明ZUC并不具备相关性能量分析攻击的免疫力,同时也证实了攻击方案快速评估方法的有效性。相比Tang Ming等采用随机初始向量进行差分能量攻击,初始向量样本数达到5000时才能观察到明显的差分功耗尖峰,该文的攻击方案只需256个初始向量,且攻击效果更为显著。
一类由交织方式构造的二元ZCZ序列簇
王劲松, 戚文峰
2007, 29(7): 1573-1575. doi: 10.3724/SP.J.1146.2005.01291  刊出日期:2007-07-19
关键词: 准同步CDMA通信系统;ZCZ序列簇;正交序列簇
2000年, Tang, Fan和Matsufuji给出(L,M,Zcz)-ZCZ序列簇的理论界为ZczL/M-1 。给定正整数n和L,本文给出一个交织ZCZ序列簇的构造算法,该算法由L条周期为L的正交序列簇生成一类(2n+1L,2L,2n-1)-ZCZ序列簇。若n2且4 |, 该类ZCZ序列簇中编号为奇数的序列与编号为偶数的序列在移位为时相关值为零。此外,选择不同的正交序列簇或不同的移位序列, 经构造算法可以生成不同的ZCZ序列簇。
低速率WI编码器中4~6bit基音量化算法研究
罗亚飞, 鲍长春
2007, 29(11): 2669-2671. doi: 10.3724/SP.J.1146.2006.00604  刊出日期:2007-11-19
关键词: 语音编码;基音量化;波形内插
基音在语音编码中通常采用7bit无失真均匀量化。由于浊音段语音的基音普遍具有缓慢渐变的特点,为了更有效地去除前后帧基音之间存在的相关性,该文基于Eriksson和Kang提出的4bit基音量化算法,针对汉语语音进行研究,实现了一套4~6bit基音量化算法。该算法计算简单,无需码书存储。将此基音量化方案应用于WI模型和WI编码器,主观A/B听力测试结果表明,该方案在高效量化基音的同时保证了合成语音质量几乎没有损失,完全满足低速率WI编码器对量化基音的要求。
基于模糊子空间聚类的〇阶L2型TSK模糊系统
邓赵红, 张江滨, 蒋亦樟, 史荧中, 王士同
2015, 37(9): 2082-2088. doi: 10.11999/JEIT150074  刊出日期:2015-09-19
关键词: Takagi-Sugeno-Kang(TSK)模糊系统, 医疗诊断, 解释性, 高维数据
经典数据驱动型TSK(Takagi-Sugeno-Kang)模糊系统在获取模糊规则时,会考虑数据的所有特征空间,其带来一个重要缺陷:如果数据的特征空间维数过高,则系统获取的模糊规则繁杂,使系统复杂度增加而导致解释性下降。该文针对此缺陷,探讨了一种基于模糊子空间聚类的〇阶L2型TSK模糊系统(Fuzzy Subspace Clustering based zero-order L2- norm TSK Fuzzy System, FSC-0-L2-TSK-FS)构建新方法。新方法构建的模糊系统不仅能缩减模糊规则前件的特征空间,而且获取的模糊规则可对应于不同的特征子空间,从而具有更接近人类思维的推理机制。模拟和真实数据集上的建模结果表明,新方法增强了面对高维数据所建模型的解释性,同时所建模型得到了较之于一些经典方法更好或可比较的泛化性能。