2013, 35(1): 126-132.
doi: 10.3724/SP.J.1146.2012.00602
刊出日期:2013-01-19
可重构柔性网络链路失效将严重影响其上承载的可重构服务承载网(RSCN)的可靠性。文章基于路径备份策略着重解决时延敏感类型RSCN的可靠性问题,并提出分阶段处理方式进一步优化备份资源消耗。在拓扑预处理阶段,根据RSCN是否支持路径分裂分别提出分裂的最小备份拓扑生成(S-MBT-Gen)算法和最小备份生成树(MBST- Gen)算法,减小备份拓扑带宽约束总量;在拓扑映射阶段,提出主备拓扑协同映射(RNM-PBT)算法,协调利用底层网络资源。仿真结果表明,本文提出的算法降低了RSCN平均资源消耗,且具有较高的请求接受率和较低的平均执行时间。
2022, 44(2): 477-485.
doi: 10.11999/JEIT210778
刊出日期:2022-02-25
在基于运动想象(MI)的脑机接口(BCI)中,通常采用较多通道的脑电信号(EEG)来提高分类精度,但其中会有包含与MI任务无关或冗余信息的通道,从而影响BCI的性能提升。该文针对运动想象脑电分类中的通道选择问题,提出一种采用相关性和稀疏表示对通道进行选择的方法(CSR-CS)。首先计算训练样本每个通道的皮尔逊相关系数来选择显著通道,然后提取显著通道所在区域的滤波器组共空间模式特征拼接成字典,利用由字典所得到的非零稀疏系数的个数表征每个区域的分类能力,选出显著区域所包含的显著通道作为最优通道,最后采用共空间模式和支持向量机分别进行特征提取与分类。在对BCI第3次竞赛数据集IVa和BCI第4次竞赛数据集I两个二分类MI任务的分类实验中,平均分类精度达到了88.61%和83.9%,表明所提通道选择方法的有效性和鲁棒性。
2009, 31(4): 853-856.
doi: 10.3724/SP.J.1146.2007.01901
刊出日期:2009-04-19
关键词:
射频识别;安全;隐私;相互认证;部分ID
在低成本电子标签中实现安全隐私功能是RFID研究领域需要解决的一项关键技术,该文采用部分ID,CRC校验以及ID动态更新的方法,提出一种新型RFID相互认证协议,该协议具有前向安全性,能够防止位置隐私攻击、重传攻击、窃听攻击和拒绝服务攻击,新协议有效地解决了RFID安全隐私问题,并且符合EPC Class1 Gen2标准,它的硬件复杂度较低,适用于低成本电子标签。
2016, 38(8): 1894-1900.
doi: 10.11999/JEIT151207
刊出日期:2016-08-19
海量机器类终端(或MTC终端)同步入网时,其业务呈现瞬时突发性,这使得基于齐次或复合泊松假设的多信道S-ALOHA稳态性能分析办法难以直接应用。该文以第i个随机接入时隙内第j次进行随机接入的用户数Mi(j)作为状态变量,提出了一种沿Mi(j) 的j方向迭代进行多信道S-ALOHA暂态性能分析的办法及其近似形式。该迭代办法可建立第i个随机接入时隙内第j次进行随机接入的用户数与第x个随机接入时隙内新到用户数的直接关系(其中xi),也可给出接入时延概率密度函数、概率分布函数和均值的求解办法。以3GPP MTC业务参考模型进行数值仿真,验证了所提迭代办法及其近似形式的有效性。相关研究可为承载网络的优化设计提供参考。
2023, 45(10): 3458-3467.
doi: 10.11999/JEIT221449
刊出日期:2023-10-31
基于运动意图的脑-机接口(BCI)对人体运动功能增强、替代和康复具有重要研究意义与应用价值。其中,运动想象(MI)是最常用的表征运动意图的BCI范式。然而,传统MI-BCI通常仅实现不同肢体部位运动意图解码,且识别正确率较低,制约着精细运动控制与康复效果。针对上述问题,近年来研究者在单一肢体特定部位、运动学与动力学意图诱发头皮脑电编解码以及运动意图错误相关电位检测3个方面开展了一系列有意义的探索,并在高自由度的运动指令控制和面向卒中患者的临床康复应用方面取得了较大的研究成果。该文从运动意图的头皮脑电(EEG)编解码相关范式及其BCI应用两个方面综述了本领域研究进展,并探讨当前研究存在的问题和可能的解决方案,以期促进运动意图BCI技术的深入研究及开发应用。
2015, 37(10): 2483-2489.
doi: 10.11999/JEIT150030
刊出日期:2015-10-19
为了抑制或者消除准同步码分多址(QS-CDMA)通信系统的多址干扰(MAI)、多径干扰(MI)以及邻小区干扰,该文提出一类非对称零相关区(A-ZCZ)序列偶集的构造方法。基于给定的最佳自相关序列偶,运用交织操作,成功设计一类非对称零相关区序列偶集。新集合的每个子集均是零相关区序列偶集,且不同子集的序列偶间的互相关函数(CCF)具有更大的零互相关区(ZCCZ)。同时,该文提出的构造方法可以根据系统要求灵活地选择子集的零相关区宽度。
2021, 43(12): 3743-3748.
doi: 10.11999/JEIT200855
刊出日期:2021-12-21
该文提出一种高性能硬件加密引擎阵列架构,为大数据应用提供了先进的安全解决方案。该模块架构包括一个高速接口、一个中央管理和监视模块(CMMM)、一组多通道驱动加密引擎阵列,其中CMMM将任务分配给加密引擎,经由专用算法处理后再将数据传回主机。由于接口吞吐量和加密引擎阵列规模会限制模块性能,针对PCIe高速接口,采用MMC/eMMC总线连接构建阵列,发现更多加密引擎集成到系统后,模块性能将会得到提升。为验证该架构,使用55 nm制程工艺完成了一个PCIe Gen2×4接口的ASIC加密卡,测试结果显示其平均吞吐量高达419.23 MB。
2023, 45(8): 2722-2730.
doi: 10.11999/JEIT221367
刊出日期:2023-08-21
相对于传统人工神经网络(ANN),脉冲神经网络(SNN)具有生物可解释性、计算效率高等优势。然而,对于目标检测任务,SNN存在训练难度大、精度低等问题。针对上述问题,该文提出一种基于动态阈值LIF神经元(DT-LIF)与单镜头多盒检测器(SSD)的SNN目标检测方法。首先,设计了一种DT-LIF神经元模型,该模型可根据累积的膜电位动态调整神经元的阈值,以驱动深层网络的脉冲活动,提高推理速度。同时,以DT-LIF神经元为基元,构建了一种基于SSD的混合SNN。该网络以脉冲视觉几何群网络(Spiking VGG)和脉冲密集连接卷积网络(Spiking DenseNet)为主干(Backbone),具有由批处理归一化(BN)层、脉冲卷积(SC)层与DT-LIF神经元构成的3个额外层和SSD预测框头(Head)。实验结果表明,相对于LIF神经元网络,DT-LIF神经元网络在Prophesee GEN1数据集上的目标检测精度提高了25.2%。对比AsyNet算法,所提方法的目标检测精度提高了17.9%。