The Flow Gain Methods and Applications Based on Cognition Functional Connectivity
-
摘要: 将网络信息的概念引入到神经科学当中对于研究脑功能机制有着积极的作用。然而人脑网络的复杂性对于理解有一定的困难。该文基于有向传递函数(Directed Transfer Function, DTF)的方法估计得到功能连接模式,进一步提出了信息流增益的计算方法,用以评价特定脑区在全脑信息传输过程中的作用。该方法将流入信息和流出信息结合,具有浓缩两者信息的优点,简化了脑复杂网络的辨识度,并且提高了结果的显示标度。仿真运算和自发、诱发脑电数据的结果都显示出通过计算分析信息流增益可以比较理想地得到各个脑区对全脑信息流的贡献。结果证明信息流增益方法为进一步理解大脑认知机制提供了可能。Abstract: It has a positive effect on the research of brain function to introduce the concept of network into neuroscience. However, in the real application the brain network with complex characteristics makes it hard to understand. In this paper, based on the functional connectivity patterns estimated by the Directed Transfer Function (DTF) methods, flow gain is proposed to assess the role of the specific brain region involved in the information transmission process. Integrating input and output information simultaneously, flow gain simplifies the identification of complex networks, as well as improves the display scale of the results. Both the simulation and spontaneous, evoked ElectroEncephaloGram (EEG) data indicate that flow gain can describe the output intensity of specific region to the whole brain. The results prove that with the definition of flow gain, it is possible to further the understanding of brain cognitive mechanism.
期刊类型引用(6)
1. 黄保强,李春胜. 基于癫痫网络动态重构与虚拟切除的致痫区定位研究. 生物医学工程学杂志. 2022(06): 1165-1172 . 百度学术
2. 耿雪青,佘青山,张启忠,罗志增. 基于Copula的多变量运动想象脑电信号因果分析方法. 航天医学与医学工程. 2018(01): 49-56 . 百度学术
3. 佘青山,陈希豪,高发荣,罗志增. 基于感兴趣脑区LASSO-Granger因果关系的脑电特征提取算法. 电子与信息学报. 2016(05): 1266-1270 . 本站查看
4. 陈强,陈勋,余凤琼. 基于独立向量分析的脑电信号中肌电伪迹的去除方法. 电子与信息学报. 2016(11): 2840-2847 . 本站查看
5. 宋利清,祖红月,王索刚. 不同复杂度心算任务基于脑电的因果连接流增益研究. 科学技术与工程. 2016(15): 54-59 . 百度学术
6. 闫铮,俞谢益,吴畏. 基于信息流增益算法的脑运动功能康复效果评价研究. 中国生物医学工程学报. 2015(03): 365-369 . 百度学术
其他类型引用(7)
-
计量
- 文章访问数: 1625
- HTML全文浏览量: 139
- PDF下载量: 603
- 被引次数: 13