Integral Property Analysis on the Structure of SP-GFS
-
摘要: 该文提出了扩散级数的定义,刻画了线性置换的扩散性质。此外针对SP(Substitute Permutation)轮函数的整体结构GFS(Generalized Feistel Structure)进行了积分性质分析,通过分析线性置换P的扩散级数对积分区分器长度的影响,证明得出SP-GFS结构的积分区分器轮数下界。最后用这种方法改进了分组算法Camellia和CLEFIA的积分区分器,从而验证了结论的正确性。
-
关键词:
- 扩散层 /
- 分支数 /
- 广义Feistel结构 /
- 积分区分器 /
- 扩散级数
Abstract: The paper propose the definition of diffusion order and described the diffusion property of the linear permutation. Moreover, by analyzing effect of the linear permutation on the integral distinguisher length, the lower bounds for the round number of the Substitute Permutation-Generalized Feistel Structure (SP-GFS) integral distinguisher with different linear permutations P are obtained. Using this method,the integral distinguishers of two block ciphers Camellia and CLEFIA are improved, hence verifying the correctness of the conclusion.
计量
- 文章访问数: 1983
- HTML全文浏览量: 105
- PDF下载量: 580
- 被引次数: 0