A Modeling and Target Detection Algorithm Based on Adaptive Adjustment K- for Mixture Gaussian Background
-
摘要: 针对非平稳背景下的复杂场景,该文提出一种自适应调整K-的混合高斯背景建模和目标检测算法。该方法利用混合高斯模型(GMM)学习每个像素在时间域上的分布,构建自适应调整高斯分量K的方法,并针对不同情况,对描述像素的高斯分量数进行增加、删除或合并;在此基础上,模型参数更新式中引入了两个新的参数,能够根据实际情况自适应调整值,使得背景建模和目标检测能够准确实时地随像素变化而变化,从而减少了运动目标信息的损失,提高了算法的鲁棒性和收敛性。实验表明,该算法在有诸多不确定因素的序列视频中能够迅速响应实际场景的变化,实现自适应背景建模和准确的目标检测。
-
关键词:
- 运动目标检测 /
- 背景建模 /
- 混合高斯模型(GMM) /
- 自适应调整K-
Abstract: A modeling and target detection algorithm based on adaptive adjustmentK- for Mixture Gaussian background is proposed for complex scenes with non-stationary background. The Mixture Gaussian Model (GMM) is applied to learn the distribution of per-pixel in the temporal domain, then a method is constructed for adaptively adjusting the number K of Gaussian components, and the number K will be added, deleted, or merged with similar Gaussian components according to different situation. Furthermore, two new parameters are introduced in the adaptive parameter model, and the parameter is adaptively adjusted according to the actual situation, which assures that the background modeling and target detection real-time changes with the pixel. The property of real-time and accuracy reduces the loss of information for moving target and improves the robustness and convergence. Experimental results show that the algorithm responses rapidly when the scene changes in the sequence of video with many uncertain factors, and realizes adaptive background modeling and accurate target detection.
计量
- 文章访问数: 2515
- HTML全文浏览量: 108
- PDF下载量: 726
- 被引次数: 0