An Efficient Probabilistic Packet Marking Node Localization Algorithm Based on Layers-mixed in WSNs
-
摘要: 在利用概率包标记技术对无线传感器网络(WSN)恶意节点的追踪定位中,标记概率的确定是关键,直接影响到算法的收敛性,最弱链,节点负担等方面。该文分析并指出了基本概率包标记(BPPM)和等概率包标记(EPPM)方法的缺点,提出了一种层次式混合概率包标记(LMPPM)算法,可以克服以上算法的不足。该算法对无线传感器网络进行分簇,将每个簇看成一个大的簇节点,整个网络由一些大的簇节点构成,每个簇节点内部又包含一定数量的传感器节点。在簇节点之间采用等概率包标记法,在簇节点内部采用基本概率包标记法。实验分析表明,该算法在收敛性、最弱链方面优于BPPM算法,在节点计算与存储负担方面优于EPPM算法,是在资源约束条件下的一种整体优化。
-
关键词:
- 无线传感器网络(WSN) /
- 概率包标记(PPM) /
- 溯源定位 /
- 分簇
Abstract: When the probabilistic packet marking technique for traceback and localization of malicious nodes in Wireless Sensor Networks (WSNs), the determination of marking probability is the key to influence the convergence, the weakest link, and the node burden of the algorithm. First, the disadvantages of the Basic Probabilistic Packet Marking (BPPM) algorithm and the Equal Probabilistic Packet Marking (EPPM) algorithm is analyzed. Then, a Layered Mixed Probabilistic Packet Marking (LMPPM) algorithm is proposed to overcome the defects of the above algorithms. In the proposed algorithm, WSN is clustered, and each cluster is considered as a big cluster nodes, therefore, the whole network consists of some big cluster nodes. Correspondingly, each cluster nodes internal contains a certain number of sensor nodes. The EPPM algorithm is used between the cluster nodes, and the BPPM algorithm is used in the cluster nodes. Experiments show that LMPPM is better than BPPM in convergence and the weakest link, and the node storage burden of the proposed algorithm is lower than that of the EPPM algorithm. The experiments confirm that the proposed algorithm is a kind of whole optimization under the conditions of resource constraint.
计量
- 文章访问数: 2367
- HTML全文浏览量: 97
- PDF下载量: 918
- 被引次数: 0