Discrimination of Exo-atmospheric Targets Based on Optimization of Probabilistic Neural Network and IR Multispectral Fusion
-
摘要: 针对大气层外空间弹道目标难识别的问题,该文利用红外多光谱数据融合的思想,提出一种基于粒子群优化概率神经网络(PNN)的大气层外空间弹道目标识别方法。该方法首先通过一种新的多色测温方法提取出弹道目标的温度变化率和有效辐射面积两类动态特征,然后利用高斯粒子群优化(GPSO)方法对PNN的平滑因子进行优化,最后利用优化的PNN完成4类典型空间目标的识别。该方法融合了多光谱信息并提取出了多个动态特征,具有较强的鲁棒性。另外,该方法充分利用了概率神经网络的较高的稳定性和样本容错能力。仿真实验给出了4类典型空间弹道目标的多光谱红外辐射强度序列数据,并进行了目标识别研究。仿真测试结果表明,提出的优化PNN网络对多个弹道目标具有良好的识别能力。Abstract: A Probabilistic Neural Network (PNN) based on Particle Swarm Optimization (PSO) is proposed for ballistic target recognition due to its difficulty in this paper. The fusion of multispectral infrared data is achieved through the use of this method. Firstly, the temperature and emissivity-area of targets are extracted by using a novel multi-colorimetric technology, then the parameter of the PNN is optimized with Gaussian PSO (GPSO), and finally the four typical ballistic targets are classified via the optimized PNN. The method fuses the multi-spectral and multiple dynamic features, hence allowing this algorithm to be quite robust. In addition, the method fully exploits the PNNs capability for its higher stability and fault-tolerance mechanism. The simulation experiments present multi-spectral infrared radiation intensity sequence of four ballistic targets, and the results show that the proposed method based on the PNN is able to recognize the multiple ballistic targets.
计量
- 文章访问数: 2419
- HTML全文浏览量: 136
- PDF下载量: 827
- 被引次数: 0