Efficient Divisible E-cash System Based on Reverse Binary Tree
-
摘要: 针对于Izabachene等人(2012)在标准模型下构建的可分电子现金系统花费协议和存款协议效率低的问题,该文利用Groth-Sahai(GS)证明系统和累加器原理,首次提出了逆序二叉树构建法,并在标准模型下构建了一个高效的可分电子现金系统。与现有系统相比,新系统在构建二叉树时可以并行计算二叉树叶子节点的序列号和在花费协议中可以直接证明用户花费路径的正确性,从而保证花费协议中用户的计算量是常量;新系统在安全性上不仅具有弱不可诬陷性,同时也具有强不可诬陷性;最后在标准模型下给出了系统的安全性证明,证明了该系统具有不可伪造性、匿名性、不可重复花费性和不可诬陷性。
-
关键词:
- 可分电子现金系统 /
- 标准模型 /
- 逆序二叉树 /
- 有限累加器 /
- Groth-Sahai (GS)证明
Abstract: There exist some defects such as low efficiency in the spending protocol and deposit protocol of the proposed by Izabachene et al. (2012) divisible E-cash system based on the standard model. Using the Groth-Sahai (GS) proof system and accumulator, this paper proposes a reverse binary tree algorithm and designs an efficient divisible E-cash system under the standard model. The new system can calculate simultaneously the series number of the leaf nodes of the binary tree in the process of the binary tree construction. A user can prove the correctness of spending path directly, thus the computation load of user is constant in the spending protocol. The new system achieves both the weak exculpability and the strong exculpability. Finally, the security proof of the system is given in the standard model which includes unforgeability, anonymity, identification of double spender and exculpability.
计量
- 文章访问数: 2236
- HTML全文浏览量: 140
- PDF下载量: 918
- 被引次数: 0