Applying Evolutionary Hypernetworks for Multiclass Molecular Classification of Cancer
-
摘要: 该文提出一种用于多类型癌症分子分型的演化超网络模式识别方法。首先采用一对多方法,将一个多类分型问题转化为多个二类分型问题;然后利用信噪比方法对DNA微阵列数据进行信息基因选择;经过超网络对训练集的演化学习,构造一系列二类分类器并进行集成,最终构建一个多类型癌症分型系统并对待测样本进行分类。对急性白血病、儿童小圆蓝细胞肿瘤和GCM数据集实验结果表明:演化超网络留一交叉验证(LOOCV)识别率分别为:98.61%,100%和85.35%。演化超网络有利于挖掘癌症相关基因,具有良好的学习结果可读性。Abstract: This paper presents a pattern recognition method for multiclass cancer molecular classification using evolutionary hypernetworks. A multiclass classification issue is decomposed into a set of binary classification issues by One-Versus-All (OVA) approach. The signal-to-noise ratio method is employed for informative genes selection from the DNA microarray. A series of binary classifiers are evolved and used to build a final ensemble classifier for multiclass classification through an evolutionary learning procedure of the hypernetwork. The test sample is classified by using the ensemble classifier. Experimental results show that the Leave One Out Cross Validation (LOOCV) accuracy of the acute leukemia dataset, the small, round blue cell tumor dataset, and the GCM dataset is 98.61%, 100% and 85.35%, respectively. The evolutionary hypernetworks is fit to find cancer-related genes and has a good readability of the learned results.
计量
- 文章访问数: 2845
- HTML全文浏览量: 107
- PDF下载量: 860
- 被引次数: 0