基于局部加权的Citation-kNN算法
doi: 10.3724/SP.J.1146.2012.00016
Citation-kNN Algorithm Based on Locally-weighting
-
摘要: Citation-kNN算法对传统的kNN算法进行了改进,使其可以应用于多示例学习问题,但其0-1决策方式具有一定的局限性,没有充分考虑样本的分布情况。为解决该问题,该文提出局部加权的Citation-kNN算法,综合考虑样本的分布情况,提出基于样本距离加权、基于样本离散度加权的方法,并对各种组合情况进行了实验。在标准数据集MUSK和乳腺超声图像数据库上的实验结果表明,该文提出的方法与Citation-kNN相比,性能有明显提高,并具有良好的适应性。
-
关键词:
- 图像识别 /
- 多示例学习 /
- Citation-kNN /
- 样本分布 /
- 局部加权
Abstract: The Citation-kNN algorithm improves traditional kNN algorithm and can be applied to solve multi- instance learning issue. But its 0-1 decision strategy has some limitations. To overcome this issue, the locally-weighted Citation-kNN algorithm is presented in this paper. Considering distribution of the samples, the distance-based weighted method and the scatter-based weighted method are proposed. And their combinations are discussed. The method is applied to the standard database MUSK and the breast ultrasound image database. The results confirm that the method has higher accuracy comparing with that by using Citation-kNN algorithm.
计量
- 文章访问数: 2494
- HTML全文浏览量: 81
- PDF下载量: 1052
- 被引次数: 0