基于小波核主成分分析的相关向量机高光谱图像分类
doi: 10.3724/SP.J.1146.2011.01282
Relevant Vector Machine Classification of Hyperspectral Image Based on Wavelet Kernel Principal Component Analysis
-
摘要: 相关向量机(RVM)高光谱图像分类是一种较新的高光谱图像分类方法,然而算法本身存在对于高维大样本数据训练时间过长、分类精度不高的问题。针对这些问题,该文提出一种基于新型核主成分分析的RVM分类方法。该方法首先将核函数引入到主成分分析中,然后应用小波核函数代替传统核函数,利用小波核函数的多分辨率分析特点,进一步提高核主成分分析(KPCA)非线性映射能力,最终将新型核主成分分析算法与相关向量机相结合,对高光谱图像进行分类。仿真实验结果表明,将所提出的方法应用于AVIRIS美国印第安纳州实验田高光谱数据预处理后,类内类间距离比降低20%,方差整体增幅较大,最终将处理后的数据应用于相关向量机的高光谱图像分类中,分类精度提升3%~5%。Abstract: Hyperspectral image classification by the Relevance Vector Machine (RVM) is a relatively new hyperspectral image classification method, however this method exists some shortcomings such as when the sample data is large and high dimension, the training time will be quit long and the classification accuracy is not so good. To solve these problems, this paper proposes a RVM classification method based on the new Kernel Principal Component Analysis (KPCA). This method uses the kernel function into the PCA and replaced the traditional kernel function with the wavelet kernel function. By using the feature of multiresolution analysis, the new method improves the nonlinear mapping capability of KPCA and the experiment completes the RVM hyperspectral image classification based on the wavelet kernel function PCA, And then the different effects of the hyperspectral image classification between the traditional PCA and the wavelet kernel PCA are analyzed and compared. The results show that by using the WKPCA method, the Euclidean distance of AVIRIS hyperspectral image data between the different categories and the same categories is lower 20% and the variance has been sharp rised. The classification accuracy, by using the RVM, improves the 3%~5%.
计量
- 文章访问数: 2843
- HTML全文浏览量: 109
- PDF下载量: 737
- 被引次数: 0