高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于加权Boosting的核偏最小二乘图像超分辨率重建

李小燕 和红杰 尹忠科 陈帆

李小燕, 和红杰, 尹忠科, 陈帆. 基于加权Boosting的核偏最小二乘图像超分辨率重建[J]. 电子与信息学报, 2012, 34(7): 1525-1530. doi: 10.3724/SP.J.1146.2011.01191
引用本文: 李小燕, 和红杰, 尹忠科, 陈帆. 基于加权Boosting的核偏最小二乘图像超分辨率重建[J]. 电子与信息学报, 2012, 34(7): 1525-1530. doi: 10.3724/SP.J.1146.2011.01191
Li Xiao-Yan, He Hong-Jie, Yin Zhong-Ke, Chen Fan. Image Super-resolution Reconstruction Based on Kernel Partial Least Squares and Weighted Boosting[J]. Journal of Electronics & Information Technology, 2012, 34(7): 1525-1530. doi: 10.3724/SP.J.1146.2011.01191
Citation: Li Xiao-Yan, He Hong-Jie, Yin Zhong-Ke, Chen Fan. Image Super-resolution Reconstruction Based on Kernel Partial Least Squares and Weighted Boosting[J]. Journal of Electronics & Information Technology, 2012, 34(7): 1525-1530. doi: 10.3724/SP.J.1146.2011.01191

基于加权Boosting的核偏最小二乘图像超分辨率重建

doi: 10.3724/SP.J.1146.2011.01191
基金项目: 

国家自然科学基金(60970122),教育部博士点基金(20090184120021),中央高校基本科研业务专项基金(SWJTU09CX039, SWJTU10CX09)和四川省科技创新苗子工程项目(2011-013)资助课题

Image Super-resolution Reconstruction Based on Kernel Partial Least Squares and Weighted Boosting

  • 摘要: 核偏最小二乘(KPLS)算法对每个图像块选用全部主元成分进行图像重建,导致图像超分辨率算法的计算量大。兼顾图像重建质量和时间效率,该文提出一种加权Boosting的图像超分辨率重建算法。为自适应地选取每个图像块主元成分的最佳数目,利用加权Boosting原理对KPLS回归预测量进行补偿,推导给出补偿权重系数的数学表达式。讨论不同Boosting阈值情况下的重建性能,在合适的下,选取出主元成分的最佳数目m更好地满足KPLS回归模型的精度要求。实验结果表明,该文算法的超分辨率重建质量优于传统算法。
  • Park S C, Park M K, and Kang M G. Super-resolution image reconstruction: a technical overview[J].IEEE Signal Processing Magazine.2003, 20(3):21-36[2]杨浩, 高建坡, 吴镇扬. 一种新的图像配准和超分辨率重建算法[J].电子与信息学报.2008, 30(1):168-171浏览[3]Yang Hao, Gao Jian-po, and Wu Zhen-yang. A new algorithm for image registration and super-resolution reconstruction[J].Journal of Electronics Information Technology.2008, 30(1):168-171[5]Glasner D.[J].Bagon S, and Irani M. Super-resolution from a single image[C]. IEEE 12th International Conference on Computer Vision, Kyoto, Japan.2009,:-[6]乔建苹, 刘琚, 闫华, 等. 基于Log-WT的人脸图像超分辨率重建[J].电子与信息学报.2008, 30(6):1276-1280浏览[7]Qiao Jian-ping, Liu Ju, Yan Hua, et al.. A Log-WT based super-resolution algorithm[J].Journal of Electronics Information Technology.2008, 30(6):1276-1280[8]Chan T M, Zhang J, Pu J, et al.. Neighbor embedding based super-resolution algorithm through edge detection and feature selection[J].Pattern Recognition Letters.2009, 30(5):494-502[9]Yang J, Wright J, Huang T, et al.. Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing.2010, 19(11):2861-2873[10]李民, 李世华, 李小文, 等. 非局部联合稀疏近似的超分辨率重建算法[J].电子与信息学报.2011, 33(6):1407-1412浏览[11]Li Min, Li Shi-hua, Li Xiao-wen, et al.. Super-resolution reconstruction algorithm based on non-local simultaneous sparse approximation[J].Journal of Electronics Information Technology.2011, 33(6):1407-1412[12]胡宇, 赵保军, 沈庭芝, 等. 基于偏最小二乘的人脸超分辨率重构[J]. 北京理工大学学报, 2010, 30(9): 1098-1101.[14]Wu W, Liu Z, and He X. Learning-based super resolution using kernel partial least squares[J].Image and Vision Computing.2011, 29(6):394-406[15]王惠文, 吴载斌, 孟洁. 偏最小二乘回归的线性与非线性方法[M]. 北京: 国防工业出版社, 2006: 97-104, 215-225.[17]Rosipal R and Krmer N. Overview and recent advances in partial least squares[J].Lecture Notes in Computer Science.2006, 3940:34-51[18]Chen S, Wang J, Ouyang Y, et al.. Boosting part-sense multi-feature learners toward effective object detection[J].Computer Vision and Image Understanding.2011, 115(3):364-374[19]Chang C C. A boosting approach for supervised Mahalanobis distance metric learning[J].Pattern Recognition.2012, 45(2):844-862[20]Suresh S, Sundararajan N, and Saratchandran P. Risk- sensitive loss functions for sparse multi-category classification problems[J].Information Sciences.2008, 178(15):2621-2638[21]Gao X, Zhang K, Tao D, et al.. Joint learning for single image super-resolution via coupled constraint[J].IEEE Transactions on Image Processing.2012, 21(2):469-480[22]Wang Z, Bovik A C, Sheikh H R, et al.. Image quality assessment: from error measurement to structural similarity[J].IEEE Transactions on Image Processing.2004, 13(4):600-612
  • 加载中
计量
  • 文章访问数:  2657
  • HTML全文浏览量:  93
  • PDF下载量:  947
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-16
  • 修回日期:  2012-03-26
  • 刊出日期:  2012-07-19

目录

    /

    返回文章
    返回