高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于线性动态模型的雷达高分辨距离像小样本目标识别方法

王鹏辉 刘宏伟 杜兰 潘勉 张学峰

王鹏辉, 刘宏伟, 杜兰, 潘勉, 张学峰. 基于线性动态模型的雷达高分辨距离像小样本目标识别方法[J]. 电子与信息学报, 2012, 34(2): 305-311. doi: 10.3724/SP.J.1146.2011.00680
引用本文: 王鹏辉, 刘宏伟, 杜兰, 潘勉, 张学峰. 基于线性动态模型的雷达高分辨距离像小样本目标识别方法[J]. 电子与信息学报, 2012, 34(2): 305-311. doi: 10.3724/SP.J.1146.2011.00680
Wang Peng-Hui, Liu Hong-Wei, Du Lan, Pan Mian, Zhang Xue-Feng. Linear Dynamic Model Based Radar HRRP Target Recognition under Small Training Set Conditions[J]. Journal of Electronics & Information Technology, 2012, 34(2): 305-311. doi: 10.3724/SP.J.1146.2011.00680
Citation: Wang Peng-Hui, Liu Hong-Wei, Du Lan, Pan Mian, Zhang Xue-Feng. Linear Dynamic Model Based Radar HRRP Target Recognition under Small Training Set Conditions[J]. Journal of Electronics & Information Technology, 2012, 34(2): 305-311. doi: 10.3724/SP.J.1146.2011.00680

基于线性动态模型的雷达高分辨距离像小样本目标识别方法

doi: 10.3724/SP.J.1146.2011.00680
基金项目: 

国家自然科学基金(60901067, 61001212),新世纪优秀人才支持计划项目(NCET-09-0630),长江学者和创新团队发展计划项目(IRT0954)和中央高校基本科研业务费专项资金联合资助课题

Linear Dynamic Model Based Radar HRRP Target Recognition under Small Training Set Conditions

  • 摘要: 为了解决雷达高分辨距离像识别系统对训练样本需求量过大的问题,该文提出一种基于线性动态模型的小样本目标识别方法。首先分析了距离像频谱的统计特性,然后从其广义平稳性出发,使用线性动态模型对距离像频谱幅度建模,并用期望最大化算法估计模型参数。实测数据的实验结果表明:即使在很少的训练样本条件下,该方法仍能获得较高的正确识别率和良好的拒判性能。
  • 朱劼昊, 周建江, 吴杰. 基于半参数化概率密度估计的雷达目标识别[J]. 电子与信息学报, 2010, 32(9): 2161-2166. Zhu Jie-hao, Zhou Jian-jiang, and Wu Jie. Radar target recognition based on semi-parametric density estimation[J]. Journal of Electronics Information Technology, 2010, 32(9): 2161-2166. [2] Du L, Wang P, and Liu H, et al.. Bayesian spatiotemporal multitask learning for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3182-3196.[3] Shi L, Wang P, and Liu H, et al.. Radar HRRP statistical recognition with local factor analysis by automatic Bayesian Ying-Yang harmony learning[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 610-617.[4] Duda R O, Hart P E, and Stork D G. Pattern Classification[M]. New York: John Willy and Sons, Inc, 2001: 172-174.[5] Jacobs S P and OSullivan J A. Automatic target recognition using sequences of high resolution radar range profiles[J]. IEEE Transactions on Aerospace Electronic Systems, 2000, 36(2): 364-380.[6] Du L, Liu H, and Bao Z. Radar HRRP statistical recognition: parametric model and model selection[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1931-1944.[7] Zyweck A and Bogner R E. Radar target classification of commercial aircraft[J]. IEEE Transactions on Aerospace Electronic Systems, 1996, 32(2): 598-606.[8] Pei B and Bao Z. Multi-aspect radar target recognition method based on scattering centers and HMMs classifiers[J]. IEEE Transactions on Aerospace Electronic Systems, 2005, 41(3): 1067-1074. [9] Wong S K. Non-cooperative target recognition in the frequency domain[J]. IEE Proceedings Radar, Sonar Navigation, 2004, 151(2): 77-84.[10] Guo Zun-hua and Li Shao-hong. One-dimensional frequency- domain feature for aircraft recognition from radar range profiles[J]. IEEE Transactions on Aerospace Electronic Systems, 2010, 46(4): 1880-1892.[11] Wang P, Dai F, and Pan M, et al.. Radar HRRP target recognition in frequency domain based on autoregressive model[C]. IEEE Radar Conference, Kansas City, USA, 2011: 714-717.[12] Van Trees H L. Detection, Estimation, and Modulation Theory, Part III[M]. New York: John Willy and Sons, Inc, 2001: 415-419.[13] Digalakis V, Rohlicek J, and Ostendorf M. ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition[J]. IEEE Transactions on Speech Audio Processing, 1993, 1(4): 431-442.[14] Shumway R H and Stoffer D S. An approach to time series smoothing and forecasting using the EM algorithm[J]. Journal of Time Series Analysis, 1982, 3(4): 253-264.
  • 加载中
计量
  • 文章访问数:  2986
  • HTML全文浏览量:  106
  • PDF下载量:  736
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-03
  • 修回日期:  2011-11-17
  • 刊出日期:  2012-02-19

目录

    /

    返回文章
    返回