高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于四元数的Root-MUSIC的双基地MIMO雷达中角度估计算法

李建峰 张小飞 汪飞

李建峰, 张小飞, 汪飞. 基于四元数的Root-MUSIC的双基地MIMO雷达中角度估计算法[J]. 电子与信息学报, 2012, 34(2): 300-304. doi: 10.3724/SP.J.1146.2011.00612
引用本文: 李建峰, 张小飞, 汪飞. 基于四元数的Root-MUSIC的双基地MIMO雷达中角度估计算法[J]. 电子与信息学报, 2012, 34(2): 300-304. doi: 10.3724/SP.J.1146.2011.00612
Li Jian-Feng, Zhang Xiao-Fei, Wang Fei. Quaternion Root-MUSIC Algorithm for Angle Estimation in Bistatic MIMO Radar[J]. Journal of Electronics & Information Technology, 2012, 34(2): 300-304. doi: 10.3724/SP.J.1146.2011.00612
Citation: Li Jian-Feng, Zhang Xiao-Fei, Wang Fei. Quaternion Root-MUSIC Algorithm for Angle Estimation in Bistatic MIMO Radar[J]. Journal of Electronics & Information Technology, 2012, 34(2): 300-304. doi: 10.3724/SP.J.1146.2011.00612

基于四元数的Root-MUSIC的双基地MIMO雷达中角度估计算法

doi: 10.3724/SP.J.1146.2011.00612
基金项目: 

国家自然科学基金(60801052),航空科学基金(2009ZC52036),南京航空航天大学科研基金(NS2010114)和南京航空航天大学研究生创新基地(实验室)开放基金资助课题

Quaternion Root-MUSIC Algorithm for Angle Estimation in Bistatic MIMO Radar

  • 摘要: 该文将四元数理论应用到双基地集中式多输入多输出(MIMO)雷达的角度估计中。文中通过传统数据模型构造四元数矩阵,提出了基于四元数的求根-多重信号分类(Root MUltiple SIgnal Classification, Root-MUSIC)的MIMO雷达中角度估计算法,该算法通过奇异值分解和Root-MUSIC来估计出发射角(Direction Of Departure, DOD)和接收角(Direction Of Arrival, DOA)。该算法的角度估计性能远优于现有文献的方法,并且无需谱峰搜索,复杂度大大降低。仿真结果验证了算法的有效性。
  • Fishler E, Haimovich A, Blum R S, et al.. MIMO radar: an idea whose time has come[C]. Proceeding of the IEEE Radar Conference, Philadelphia, PA, Apr. 2004: 71-78.[2] Li J and Stoica P. MIMO radardiversity means superiority[C]. Proc. 14th Adaptive Sensor Array Processing, Workshop (ASAP 06), Lincoln Lab, Mass, USA, Dec. 2006: 1-6,[3] Li X, Zhang Z, et al.. A study of frequency diversity MIMO radar beamforming[C]. IEEE 10th International Conference (ICSP2010), Beijing, China, 2010: 352-356.[4] Sharma R. Analysis of MIMO radar ambiguity functions and implications on clear region[C]. IEEE International Radar Conference, Washington DC, USA, May 2010: 544-548.[5] Li J, Liao G, and Griffiths H. Bistatic MIMO radar space- time adaptive processing[C]. 2011 IEEE International Radar Conference, Westin Crown Center in Kansas City, Missouri, May 2011: 498-502.[6] Wu X H, Kishk A A, and Glisson A W. MIMO-OFDM radar for direction estimation[J]. IET Radar, Sonar Navigation, 2010, 4(1): 28-36.[7] Yan H, Li J, and Liao G. Multitarget identification and localization using bistatic MIMO radar systems[J]. EURASIP Journal on Advances in Signal Processing, 2008, Article ID: 283483, 1-8.[8] Li J, Stoica P, Xu L, et al.. On parameter identifiability of MIMO radar[J]. IEEE Signal Processing Letters, 2007, 14(12): 968-971. [9] Li J, Liao G, Ma K, and Zeng C.Waveform decorrelation for multitarget localization in bistatic MIMO radar systems[C]. 2010 IEEE International Radar Conference,Washington, May 2010: 21-24.[10] Xu L, Li J, and Stoica P. Target detection and parameter estimation for MIMO radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 927-939.[11] Chen J L, Gu H, and Su W M. Angle estimation using ESPRIT without pairing in MIMO radar[J]. Electronics Letters, 2008, 44(24): 1422-1423.[12] Zhang X F and Xu D Z. Angle Estimation in MIMO radar using Reduced-dimension Capon[J]. Electronics Letters, 2010, 46(12): 860-861. [13] Zhang X F and Xu D Z. Direction of Departure (DOD) and Direction of Arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC[J]. IEEE Communications Letters, 2010, 14(12): 1161-1163.[14] Bencheikh M L, Wang Y, and He H. Polynomial root finding technique for joint DOA DOD estimation in bistatic MIMO radar[J]. Signal Processing, 2010, 90(9): 2723-2730.[15] Miron S, Bihan N L, and Mars J. Quaternion-music for vector-sensor array processing[J]. IEEE Transactions on Signal Processing, 2006, 54(4): 1218-1229.[16] Miron S, Bihan N L, and Mars J. High resolution vector- sensor array processing based on biquaternions[C]. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Toulousem, France, 2006, 5: 248-251.[17] Bihan N L and Mars J. Subspace method for vector-sensor wave separation based on quaternion algebra[C]. XI European Signal Processing Conference (EUSIPCO), Toulouse, France, 2002, 9: 119-123.[18] Wang F, Wang S X, and Wu Y G. 2-D DOA estimation in the presence of Gaussian noise with quaternion[C]. Ellison, IEEE 2005 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, MAPE, Beijing, China, IEEE Press, 2005: 8-12.[19] 汪飞, 王树勋, 陈巧霞. 基于Hamilton四元数矩阵奇异值分解的二维谐波频率参量估计[J]. 电子学报, 2007, 35(12): 2441-2445.Wang Fei, Wang Shu-xun, and Chen Qiao-xia. Parameter estimation of two-dimensional harmonic frequency based on the singular value decomposition of Hamilton quaternion matrix[J]. Acta Electronica Sinica, 2007, 35(12): 2441-2445.[20] Stoica P and Nehorai A. Performance study of conditional and unconditional direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 1990, 38(10): 1783-1795.
  • 加载中
计量
  • 文章访问数:  3118
  • HTML全文浏览量:  107
  • PDF下载量:  873
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-26
  • 修回日期:  2011-10-11
  • 刊出日期:  2012-02-19

目录

    /

    返回文章
    返回