高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的基于距离加权的模板约简K近邻算法

一种新的基于距离加权的模板约简K近邻算法[J]. 电子与信息学报, 2011, 33(10): 2378-2383. doi: 10.3724/SP.J.1146.2011.00051
引用本文: 一种新的基于距离加权的模板约简K近邻算法[J]. 电子与信息学报, 2011, 33(10): 2378-2383. doi: 10.3724/SP.J.1146.2011.00051
A Novel Template Reduction K-Nearest Neighbor Classification Method Based on Weighted Distance[J]. Journal of Electronics & Information Technology, 2011, 33(10): 2378-2383. doi: 10.3724/SP.J.1146.2011.00051
Citation: A Novel Template Reduction K-Nearest Neighbor Classification Method Based on Weighted Distance[J]. Journal of Electronics & Information Technology, 2011, 33(10): 2378-2383. doi: 10.3724/SP.J.1146.2011.00051

一种新的基于距离加权的模板约简K近邻算法

doi: 10.3724/SP.J.1146.2011.00051
基金项目: 

国家自然科学基金(61075110)和北京市自然科学基金(4082004, 4112011)资助课题

A Novel Template Reduction K-Nearest Neighbor Classification Method Based on Weighted Distance

  • 摘要: 作为一种非参数的分类算法,K近邻(KNN)算法简单有效并且易于实现。但传统的KNN算法认为所有的近邻样本贡献相等,这就使得算法容易受到噪声的干扰,同时对于大的数据集,KNN的计算代价非常大。针对上述问题,该文提出了一种新的基于距离加权的模板约简K近邻算法(TWKNN)。利用模板约简技术,将训练集中远离分类边界的样本去掉,同时按照各个近邻与待测样本的距离为K个近邻赋予不同的权值,增强了算法的鲁棒性。实验结果表明,该方法可以有效地减少训练样本数目,同时还能保持传统KNN的分类精度。
  • Cover T M and Hart P E. Nearest neighbor pattern classification [J].IEEE Transactions on Information Theory.1967, 13(1):21-27[2]Nasibov E and Kandemir-Cavas C. Efficiency analysis of KNN and minimum distance-based classifiers in enzyme family prediction [J].Computational Biology and Chemistry.2009, 33(6):461-464[3]Zhang Rui, Jagadish H V, Dai Bing Tian, et al.. Optimized algorithms for predictive range and KNN queries on moving objects [J].Information Systems.2010, 35(8):911-932[5]Toyama J, Kudo M, and Imai H. Probably correct k-nearest neighbor search in high dimensions [J].Pattern Recognition.2010, 43(4):1361-1372[7]Dudai S A. The distance-weighted k-nearest neighbor rule [J].IEEE Transactions on Systems, Man and Cybernetics.1976, 6(4):325-327[8]Ferri F and Vidal E. Colour image segmentation and labeling through multiedit-condensing [J].Pattern Recognition Letters.1992, 13(8):561-568[9]Segata N, Blanzieri E, Delany S J, et al.. Noise reduction for instance-based learning with a local maximal margin approach [J].Journal of Intelligent Information Systems.2010, 35(2):301-331[12]Wilson D R and Martinez T R. Reduction techniques for instance-based learning algorithms [J].Machine Learning.2000, 38(3):257-286[13]Wu Ying Quan, Ianakiev K, and Govindaraju V. Improved k-nearest neighbor classi cation [J].Pattern Recognition.2002, 35(10):2311-2318[14]Fayed H A and Atiya A F. A novel template reduction approach for the k-nearest neighbor method [J].IEEE Transactions on Neural Networks.2009, 20(5):890-896[15]Huang D and Chow T W S. Enhancing density-based data reduction using entropy [J].Neural Computation.2006, 18(2):470-495[16]Paredes R and Vidal E. Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization [J].Pattern Recognition.2006, 39(2):171-179[17]Brighton H and Mellish C. Advances in instance selection for instance-based learning algorithms [J].Data Mining and Knowledge Discovery.2002, 6(2):153-172
  • 加载中
计量
  • 文章访问数:  2964
  • HTML全文浏览量:  93
  • PDF下载量:  1228
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-18
  • 修回日期:  2011-06-07
  • 刊出日期:  2011-10-19

目录

    /

    返回文章
    返回