一种提高SAR图像分割性能的新方法
doi: 10.3724/SP.J.1146.2010.01190
New Method for Improving the Performance of SAR Image Segmentation
-
摘要: 针对传统小波变换域SAR图像分割存在边缘保持和方向分辨率较差的不足,该文提出了一种在非下采样Brushlet变换域提取图像灰度共生概率特征的新方法。该方法在Brushlet的不同方向系数块中利用自适应窗口的Gabor滤波器提取灰度共生概率特征,有效地解决了实际操作中的最优窗口尺寸的选取问题,并利用压缩感知来对冗余的特征进行压缩,降低了聚类复杂度。最后使用模糊C均值聚类,得到分割结果。实验结果表明:该文方法与其它方法相比在边缘保持和方向分辨上有明显优势,获得了更好的分割结果。
-
关键词:
- SAR图像分割 /
- Brushlet变换 /
- 自适应窗 /
- Gabor滤波器 /
- 压缩感知
Abstract: Considering the shortage of edge preservation and low direction-resolution for SAR image segmentation based on the conventional wavelet transform domain, a new segmentation method is proposed based on Gray-Level Cooccurrence Probability (GLCP) features in the overcomplete Brushlet domain. This method compresses the redundant GLCP features extracted by the adaptive window Gabor filtering in different direction coefficient blocks using compressed sensing, then the Fuzzy C-Mean (FCM) clustering method is utilized to complete the clustering and obtain the segmentation result. The experiment results show that the new method has advantages in the edge preservation and direction extraction, and obtains better segmentation results with respect to other methods.-
Key words:
- SAR image segmentation /
- Brushlet transform /
- Adaptive window /
- Gabor filter /
- Compressed Sensing (CS)
计量
- 文章访问数: 3367
- HTML全文浏览量: 134
- PDF下载量: 878
- 被引次数: 0