高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分等级对象语义图模型的复杂目标自动识别方法研究

孙显 付琨 王宏琦

孙显, 付琨, 王宏琦. 基于分等级对象语义图模型的复杂目标自动识别方法研究[J]. 电子与信息学报, 2011, 33(5): 1062-1068. doi: 10.3724/SP.J.1146.2010.00965
引用本文: 孙显, 付琨, 王宏琦. 基于分等级对象语义图模型的复杂目标自动识别方法研究[J]. 电子与信息学报, 2011, 33(5): 1062-1068. doi: 10.3724/SP.J.1146.2010.00965
Sun Xian, Fu Kun, Wang Hong-Qi. Hierarchical Objects Semantic Graph Based Hybrid Learning Method for Automatic Complicated Objects Recognition[J]. Journal of Electronics & Information Technology, 2011, 33(5): 1062-1068. doi: 10.3724/SP.J.1146.2010.00965
Citation: Sun Xian, Fu Kun, Wang Hong-Qi. Hierarchical Objects Semantic Graph Based Hybrid Learning Method for Automatic Complicated Objects Recognition[J]. Journal of Electronics & Information Technology, 2011, 33(5): 1062-1068. doi: 10.3724/SP.J.1146.2010.00965

基于分等级对象语义图模型的复杂目标自动识别方法研究

doi: 10.3724/SP.J.1146.2010.00965
基金项目: 

国家自然科学基金(41001285)和国家863计划项目(2006AA12Z149)资助课题

Hierarchical Objects Semantic Graph Based Hybrid Learning Method for Automatic Complicated Objects Recognition

  • 摘要: 目标自动识别是图像处理领域的研究热点。针对现有方法的不足,该文提出一种新的基于分等级对象语义图模型的复杂目标自动识别方法。该方法通过构建分等级对象语义图模型增强对目标与背景间、目标部件间语义约束的利用,引入置信对象网络统计局部特性,利用消息机制传递对象间相互影响,实现概率语义分析。训练中还将产生式和判别式方法结合,提高了目标识别的准确度。在自然和遥感部分目标类别数据集上的测试结果表明,该方法能完成对多种类型和复杂结构目标的识别和提取,具有一定的实用价值。
  • Weber M, Welling M, and Perona P. Towards automatic discovery of object categories[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA, 2000: 2101-2108.[2] 张正, 王宏琦, 孙显, 巩大亮, 胡岩峰. 基于部件的自动目标检测方法研究[J]. 电子与信息学报, 2010, 32(5): 1017-1022.Zhang Zheng, Wang Hong-qi, Sun xian, Gong Da-liang, and Hu Yan-feng, et al.An automatic method for targets detection using a component-based model[J]. Journal of Electronics Information Technology, 2010, 32(5): 1017-1022.[3] Sivic J, Russel B, Efros A, Zisserman A, and Freeman W. Discovering object categories in image collection[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2005: 370-377.[4] Opelt A, Fussenegger M, Pinz A, and Auer P. Weak hypotheses and boosting for generic object detection and recognition[C]. Proceedings of the 8th European Conference on Computer Vision, Czech Republic, 2004, Vol. 2: 71-84.[5] Leibe B A and Leonardis B Schiele. Combined object categorization and segmentation with an implicit shape model[C]. In ECCV'04 Workshop on Statistical Learning in Computer Vision, Czech Republic, 2004: 17-32.[6] Fergus R, Perona P, and Zisserman A. Object class recognition by unsupervised scale-invariant learning[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, 2003, 2: 264-271.[7] Vijayanarasimhan S and Grauman K. Keywords to visual categories: multiple-instance learning for weakly supervised object categorization[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, USA, 2008: 1-8. [8] Kokkinos I and Yuille A. HOP: hierarchical object parsing[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA, 2009: 802-809.[9] Sun Xian, Wang Hong-qi, and Fu Kun. Automatic detection of geospatial objects using taxonomic semantics[J]. Geoscience and Remote Sensing Letters, 2010, 7(1): 23-27.[10] Glocker B, Zikic D, Komodakis N, and Paragios N. Linear image registration through MRF optimization[C]. IEEE International Symposium on Biomedical Imaging: from Nano to Macro, USA, 2009: 422-425.[11] Pal C, Sutton C, and McCallum A. Sparse forward-backward using minimum divergence beams for fast training of conditional random fields[C]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, 2006: 14-19.[12] Kai N, Kannan A, Criminisi A, and Winn J. Epitomic location recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2158-2167.[13] Rong X, Wujun L, Yuandong T, and Xiaoou T. Joint boosting feature selection for robust face recognition[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, USA, 2006: 1415-1422.[14] Chi-Yun Y, Burn K, and Wermter S. A neural wake-sleep learning architecture for associating robotic facial emotions[C]. IEEE World Congress on Computational Intelligence Neural Networks, Hong Kong, 2008: 2715-2721.
  • 加载中
计量
  • 文章访问数:  3216
  • HTML全文浏览量:  135
  • PDF下载量:  778
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-07
  • 修回日期:  2010-12-17
  • 刊出日期:  2011-05-19

目录

    /

    返回文章
    返回