高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于交织抽取与分块压缩感知策略的图像多描述编码方法

赵春晖 刘巍

赵春晖, 刘巍. 基于交织抽取与分块压缩感知策略的图像多描述编码方法[J]. 电子与信息学报, 2011, 33(2): 461-465. doi: 10.3724/SP.J.1146.2010.00400
引用本文: 赵春晖, 刘巍. 基于交织抽取与分块压缩感知策略的图像多描述编码方法[J]. 电子与信息学报, 2011, 33(2): 461-465. doi: 10.3724/SP.J.1146.2010.00400
Zhao Chun-Hui, Liu Wei. Image Multiple Description Coding Method Based on Interleaving Extraction and Block Compressive Sensing Strategy[J]. Journal of Electronics & Information Technology, 2011, 33(2): 461-465. doi: 10.3724/SP.J.1146.2010.00400
Citation: Zhao Chun-Hui, Liu Wei. Image Multiple Description Coding Method Based on Interleaving Extraction and Block Compressive Sensing Strategy[J]. Journal of Electronics & Information Technology, 2011, 33(2): 461-465. doi: 10.3724/SP.J.1146.2010.00400

基于交织抽取与分块压缩感知策略的图像多描述编码方法

doi: 10.3724/SP.J.1146.2010.00400
基金项目: 

国家自然科学基金(61077079)资助课题

Image Multiple Description Coding Method Based on Interleaving Extraction and Block Compressive Sensing Strategy

  • 摘要: 该文基于交织抽取和分块压缩感知(Interleaving Extraction and Block Compressive Sensing,IEBCS)理论,提出了一种可以在成像过程中实时实现的多描述编码方法(IEBCS-MDC)。首先利用交织抽取将图像划分成若干个子图像,然后对各个子图像进行分块压缩感知形成多个描述码流,接收端通过求解优化问题重建原图像。分块策略保证了观测过程的复杂程度不因图像尺寸而改变,所以该方法结构简单易于实现,适合处理高分辨率图像,另外特有的自恢复能力提升了算法的抗丢包性能。实验表明,在相同的硬件环境下,该文方法可以处理的图像尺寸远远大于CS-MDC方法,在同样的丢包率下重构质量也优于CS-MDC方法。
  • [1] Goyal V K. Multiple description coding: compression meets the network [J].IEEE Signal Processing Magazine.2001, 18(5):74-93 [2] Donoho D. Compressed sensing [J].IEEE Transactions on Information Theory.2006, 52(4):1289-1306 [3] Cands E and Wakin M. An introduction to compressive sampling: a sensing/sampling paradigm that goes against the common knowledge in data acquisition [J].IEEE Signal Processing Magazine.2008, 25(2):21-30 [4] Baraniuk R. Compressive sensing [J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. [5] 刘丹华, 石光明, 周佳社, 等. 基于Compressed Sensing框架的图像多描述编码方法[J]. 红外与毫米波学报, 2009, 28(4): 298-302. Liu Dan-hua, Shi Guang-ming, and Zhou Jia-she, et al.. New method of multiple description coding for image based on compressed sensing [J].Journal of Infrared and Millimeter. Waves.2009, 28(4):298-302 [6] Donoho D. For most large underdetermined systems of linear equations, the minimal ell-1 norm near-solution approximates the sparsest near-solution[J].Communications on Pure and Applied Mathematics.2006, 59(7):907-934 [7] Cands E and Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions [J].Foundation of Computational Mathematics.2006, 6(2):227-254 [8] Gan L. Block compressed sensing of natural images [C]. The 15th International Conference on Digital Signal Processing, Cardiff, UK, 2007: 403-406. [9] Duarte M, Davenport M, and Takhar D, et al.. Single-pixel imaging via compressive sampling [J].IEEE Signal Processing Magazine.2008, 25(2):83-91 [10] Donoho D, Tsaig Y, and Drori I, et al.. Sparse solution of underdetermined linear equations by stage wise orthogonal matching pursuit [R]. Tech. Report. 2006, Stanford, Department of Statistics, 2006.
  • 加载中
计量
  • 文章访问数:  3584
  • HTML全文浏览量:  103
  • PDF下载量:  992
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-20
  • 修回日期:  2010-10-07
  • 刊出日期:  2011-02-19

目录

    /

    返回文章
    返回