高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩散方程和MRF的SAR图像分割

贾亚飞 赵凤军 禹卫东 艾加秋

贾亚飞, 赵凤军, 禹卫东, 艾加秋. 基于扩散方程和MRF的SAR图像分割[J]. 电子与信息学报, 2011, 33(2): 363-368. doi: 10.3724/SP.J.1146.2010.00342
引用本文: 贾亚飞, 赵凤军, 禹卫东, 艾加秋. 基于扩散方程和MRF的SAR图像分割[J]. 电子与信息学报, 2011, 33(2): 363-368. doi: 10.3724/SP.J.1146.2010.00342
Jia Ya-Fei, Zhao Feng-Jun, Yu Wei-Dong, Ai Jia-Qiu. SAR Image Segmentation Based on Diffusion Equations and MRF[J]. Journal of Electronics & Information Technology, 2011, 33(2): 363-368. doi: 10.3724/SP.J.1146.2010.00342
Citation: Jia Ya-Fei, Zhao Feng-Jun, Yu Wei-Dong, Ai Jia-Qiu. SAR Image Segmentation Based on Diffusion Equations and MRF[J]. Journal of Electronics & Information Technology, 2011, 33(2): 363-368. doi: 10.3724/SP.J.1146.2010.00342

基于扩散方程和MRF的SAR图像分割

doi: 10.3724/SP.J.1146.2010.00342

SAR Image Segmentation Based on Diffusion Equations and MRF

  • 摘要: 该文提出了一种基于图像扩散方程和马尔科夫随机场(MRF)的合成孔径雷达(SAR)图像分割方法。在传统MRF算法的基础之中,引入对图像的扩散,用来平滑SAR图像中的噪声,保护图像中的边缘部分,并且加快收敛的速度。首先对输入的SAR图像进行扩散,通过MRF进行统计,得到图像中各点的后验概率,再对得到的后验概率进行扩散。与传统的MRF算法进行比较,该文的方法较好地去除了误分割斑块,减少算法的运行时间。
  • [1] 章毓晋. 图像工程(中册)图像分析. 北京: 清华大学出版社, 2005: 73-75. Zhang Yu-jin. Image Engineering (II)Image Analysis. Beijing: Tsinghua Publisher, 2005: 73-75. [2] Haker S, Sapiro G, and Tannenbaum A. Knowledge-based segmentation of sar data with learned priors[J].IEEE Transactions on Image Processing.2000, 9(2):299-301 [3] Papson S and Narayanan R. Modeling of target shadows for SAR image classification. 35th IEEE Applied imagery and pattern recognition workshop . Washington, 2006: 3-3. [4] Wen Xian-bin and Tian Zheng. Mixture multiscale autoregressive modeling of SAR imagery for segmentation[J].Electronics Letters.2003, 39(17):1272-1274 [5] 刘爱平, 付琨, 尤红建, 刘忠. 基于MAR-MRF的SAR图像分割方法. 电子与信息学报, 2009, 31(11): 2557-2562. Liu Ai-ping, Fu Kun, You Hong-jian, and Liu Zhong. SAR image segmentation based on multiscale autoregressive and Markov random field models[J].Journal of Electronics Information Technology.2009, 31(11):2557-2562 [6] Gaetano R, Scarpa G, and Poggi G. Hierarchical texture-based segmentation of multiresolution remote- sensing images[J].IEEE Transactions on Geoscience and Remote Sensing.2009, 47(7):2129-2141 [7] Weisenseel R, Clem Karl W, and Castanon D, et al.. Markov random field segmentation methods for SAR target chips[J].Proc. SPIE, Oriando.1999, Vol.3721:462-473 [8] 王大凯, 侯榆青, 彭进业. 图像处理的偏微分方程方法. 北京:科学出版社, 2008: 11-12. [9] Wang Da-kai, Hou Yu-qing, and Peng Jin-ye. Partial Differential Equations Methods of Image Processing. Beijing: Science Press, 2008: 11-12. [10] Perona P and Malik J. Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.1990, 12(7):629-639 [11] Teo P, Sapiro G, and Wandell B. Anisotropic diffusion of posterior probabilities. IEEE Int. Conf. Image Processing, Santa Barbara, CA, 1997: 675-678. [12] 王卫卫, 冯象初. 图像处理中扩散方程的快速数值解法[J].电子与信息学报.2009, 31(7):1736-1740浏览 Wang Wei-wei and Feng Xiang-chu. Fast numerical solutions of diffusion equations in image processing[J].Journal of Electronics Information Technology.2009, 31(7):1736-1740 [13] Boccignone G, Ferraro M, and Napoletano P. Diffused expectation maximization for image segmentation[J].Electronics Letters.2004, 40(18):1107-1108 [14] 宋建设, 郑永安, 袁礼海. 合成孔径雷达图像理解与应用. 北京:科学出版社, 2008: 82-83. [15] Song Jian-she, Zheng Yong-an, and Yuan Li-hai. Synthetic Aperture Radar Image Understanding and Applications. Beijing: Science Press, 2008: 82-83.
  • 加载中
计量
  • 文章访问数:  3527
  • HTML全文浏览量:  112
  • PDF下载量:  1481
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-01
  • 修回日期:  2010-08-02
  • 刊出日期:  2011-02-19

目录

    /

    返回文章
    返回