高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进混合蛙跳算法的CVRP求解

骆剑平 李霞 陈泯融

骆剑平, 李霞, 陈泯融. 基于改进混合蛙跳算法的CVRP求解[J]. 电子与信息学报, 2011, 33(2): 429-434. doi: 10.3724/SP.J.1146.2010.00328
引用本文: 骆剑平, 李霞, 陈泯融. 基于改进混合蛙跳算法的CVRP求解[J]. 电子与信息学报, 2011, 33(2): 429-434. doi: 10.3724/SP.J.1146.2010.00328
Luo Jian-Ping, Li Xia, Chen Min-Rong. Improved Shuffled Frog Leaping Algorithm for Solving CVRP[J]. Journal of Electronics & Information Technology, 2011, 33(2): 429-434. doi: 10.3724/SP.J.1146.2010.00328
Citation: Luo Jian-Ping, Li Xia, Chen Min-Rong. Improved Shuffled Frog Leaping Algorithm for Solving CVRP[J]. Journal of Electronics & Information Technology, 2011, 33(2): 429-434. doi: 10.3724/SP.J.1146.2010.00328

基于改进混合蛙跳算法的CVRP求解

doi: 10.3724/SP.J.1146.2010.00328
基金项目: 

国家自然科学基金(60772148)和高等学校博士点基金(200805900 001)资助课题

Improved Shuffled Frog Leaping Algorithm for Solving CVRP

  • 摘要: 该文提出基于实数编码模式的混合蛙跳算法(Shuffled Frog Leaping Algorithm,SFLA)求解容量约束车辆路径问题(Capacitated Vehicle Routing Problem,CVRP);把具有极强局部搜索能力的幂律极值动力学优化(Power Law Extremal Optimization,-EO)融合于SFLA,针对CVRP对-EO过程进行设计和改进。改进的-EO采用新颖的组元适应度计算方法;采用幂律概率分布来挑选需要变异的组元;根据最邻近城市表,采用幂律概率分布挑选变异组元的最佳邻近城市,执行线路间或线路内的变异。求解测试库中的实例,证明该改进算法有效。
  • [1] Dantzig G and Ramser J. The truck dispatching problem[J].Management Science.1959, 6(1):80-91 [2] Thiago A S and Leandro N. Neuro-immune approach to solve routing problems[J]. Neuro Computing, 2009, 72(10): 2189-2197. [3] Dusan T. Swarm intelligence systems for transportation engineering: Principles and applications[J].Transportation Research.2008, 16(6):651-667 [4] 王培崇, 钱旭, 周玉. 求解VRP问题的混合鱼群遗传优化算法[J]. 计算机工程与应用, 2009, 45(24): 201-203. Wang Pei-chong, Qian Xu, and Zhou Yu. Hybrid artificial fish school algorithm to solve Vehicle Routing Problem(VRP)[J]. Computer Engineering and Application, 2009, 45(24): 201-203. [5] Eusuff M M and Lansey K E. Optimization of water distribution network design using the shuffled frog leaping algorithm[J].Journal of Water Sources Planning and Management.2003, 129(3):210-225 [6] Thai H H. A modified shuffled frog leaping algorithm for optimal tuning of multivariable PID controllers[C]. International Conference on Information Technology, Singapore, 2008: 128-134. [7] Alireza R V. A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly line sequencing problem[J].Computers Industrial Engineering.2007, 53(4):642-666 [8] Sun X and Wang Z Q. A web document classification method based on shuffled frog leaping algorithm[C]. Second International Conference on Genetic and Evolutionary Computing (WGEC 2008), Jingzhou, China, 2008: 205-208. [9] 罗雪晖, 杨烨, 李霞. 改进混合蛙跳算法求解旅行商问题[J].通信学报, 2009, 30(7): 130-135. Luo Xue-hui, Yang Ye, and Li Xia. A modifed shufflled frog leaping algorithm for TSP[J]. Journal on Communications, 2009, 30(7): 130-135. [10] Boettcher S and Percus A G. Extremal Optimization: Methods derived from Co-Evolution[C]. Proceedings of the Genetic and Evolutionary Computation Conference. New York, USA, 1999: 101-106. [11] Wu Jian jun and Tan Yu bo. A particle swarm optimization algorithm for grain logistics vehicle routing problem[C]. International Colloquium on Computing, Communication, Control, and Management, Wuhan, China,2009: 364-367. [12] Chen A L and Yang G K. Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem[J].Journal of Zhejiang University.2006, 7(4):607-614 [13] Chen A L and Yang G K. Production scheduling optimization algorithm for the hot rolling processes[J].International Journal of Production Research.2008, 46(7):1955-1973 [14] Roberto B and Nicos C. An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts[J].Mathematical Programming.2008, 115(2):351-385 [15] Wang C H and Lu J Z. A hybrid genetic algorithm that optimizes capacitated vehicle routing problems[J].Expert Systems with Applications.2009, 36(2):2921-2936
  • 加载中
计量
  • 文章访问数:  4182
  • HTML全文浏览量:  191
  • PDF下载量:  1562
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-01
  • 修回日期:  2010-08-23
  • 刊出日期:  2011-02-19

目录

    /

    返回文章
    返回