高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分类和陪集码的高光谱图像无损压缩

宋娟 吴成柯 张静 刘海英

宋娟, 吴成柯, 张静, 刘海英. 基于分类和陪集码的高光谱图像无损压缩[J]. 电子与信息学报, 2011, 33(1): 231-234. doi: 10.3724/SP.J.1146.2010.00274
引用本文: 宋娟, 吴成柯, 张静, 刘海英. 基于分类和陪集码的高光谱图像无损压缩[J]. 电子与信息学报, 2011, 33(1): 231-234. doi: 10.3724/SP.J.1146.2010.00274
Song Juan, Wu Cheng-Ke, Zhang Jing, Liu Hai-Ying. Lossless Compression of Hyperspectral Images Based on Classification and Coset Coding[J]. Journal of Electronics & Information Technology, 2011, 33(1): 231-234. doi: 10.3724/SP.J.1146.2010.00274
Citation: Song Juan, Wu Cheng-Ke, Zhang Jing, Liu Hai-Ying. Lossless Compression of Hyperspectral Images Based on Classification and Coset Coding[J]. Journal of Electronics & Information Technology, 2011, 33(1): 231-234. doi: 10.3724/SP.J.1146.2010.00274

基于分类和陪集码的高光谱图像无损压缩

doi: 10.3724/SP.J.1146.2010.00274
基金项目: 

国家自然科学基金项目(60802076,60702058),111基地项目(B08038)和中央高校基本科研业务费专项资金(JY10000901007)资助课题

Lossless Compression of Hyperspectral Images Based on Classification and Coset Coding

  • 摘要: 在基于陪集码的高光谱图像压缩算法中,由于按照编码块的最大残差确定整块无损压缩所需的码率存在较大冗余,该文提出了基于分类和陪集码的高光谱图像压缩算法。首先利用前一波段对应位置的预测噪声对当前波段编码块的像素进行分类,将具有相似相关性的像素归于一类,然后对每一类像素分别进行陪集码编码。实验表明分类可以有效地降低码率。和基于陪集码的算法相比,该文算法无损压缩的平均码率降低了大约0.4 bpp。
  • Magli E, Olmo G, and Quacchio E. Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC[J].IEEE Geoscience and Remote Sensing Letters.2004, 1(1):21-25[2]Weinberger M J, Seroussi G, and Sapiro G. LOCO-I lossless image compression algorithm: principles and standardization into JPEGLS[J].IEEE Transactions on Image Processing.2000, 9(8):1309-1324[3]霍承富, 张荣. 基于搜索最优双预测波段的超光谱遥感图像无损压缩[J].电子与信息学报.2009, 31(5):1144-1147浏览Huo Cheng-fu and Zhang Rong. Lossless compression based on searching the optimal couple prediction wavebands for hyperspectral image[J].Journal of Electronics Information Technology.2009, 31(5):1144-1147[4]Zhang J, Fowler J E, and Liu G Z. Lossy-to-lossless compression of hyperspectral imagery using there- dimensional TCE and an integer KLT[J].IEEE Geoscience and Remote Sensing Letters.2008, 5(4):814-818[5]Wang Lei, Wu Jiaji, and Jiao Licheng, et al.. Lossy-to-lossless hyperspectral image compression based on multiplierless reversible integer TDLT/KLT[J].IEEE Geoscience and Remote Sensing Letters.2009, 6(3):587-591[6]Qian S E. Study of hyperspectral and multispectral images compression using vector quantization in development of CCSDS international standards[C]. Image and Signal Processing for Remote Sensing XV, Proc. of SPIE, 2009,Vol. 7477:74770O.[7]Ma Jing, Wu Chengke, and Li Yunsong, et al.. Dual-direction prediction vector quantization for lossless compression for LASIS data[C]. Proceedings of IEEE Data Compression Conference, Snowbird, UT, Mar. 2009: 458.[8]Slepian D and Wolf J K. Noiseless coding of correlated information sources[J].IEEE Transactions on Information Theory.1973, 19(4):471-480[9]Wyner A D and Ziv J. The rate-distortion function for source coding with side information at the decoder[J].IEEE Transactions on Information Theory.1976, 22(1):1-10[10]Liveris A D, Xiong Z, and Georghiades C N. Compression of binary sources with side information at the decoder using LDPC codes[J].IEEE Communications Letters.2002, 6(10):440-442[11]Aaron A and Girod B. Compression with side information using turbo codes [C]. Proc. IEEE Data Compression Conference, Snowbird, UT, Mar. 2002: 252-261.[12]Majumdar A, Chou J, and Ramchandran K. Robust distributed video compression based on multilevel coset codes[C]. Proceedings of the 37th Asilomar Conference on Signals, Systems, and Computers, Calif, USA, 2003, Vol.1: 845-849.[13]Cheung N M, Tang C, and Ortega A, et al.. Efficient wavelet-based predictive Slepian-Wolf coding for hyperspectral imagery[J].Signal Processing.2006, 86(11):3180-3195[14]Magli E, Barni M, and Abrardo A, et al.. Distributed source coding techniques for lossless compression of hyperspectral images[J]. EURASIP Journal on Advances in Signal Processing, 2007, Vol.2007, ID 45493.[15]Zhang J and Liu G Z. A novel lossless compression for hyperspectral images by context-based adaptive classified arithmetic coding in wavelet domain[J].IEEE Geoscience and Remote Sensing Letters.2007, 4(2):283-287
  • 加载中
计量
  • 文章访问数:  4518
  • HTML全文浏览量:  128
  • PDF下载量:  1733
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-23
  • 修回日期:  2010-06-16
  • 刊出日期:  2011-01-19

目录

    /

    返回文章
    返回