高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

现多重周期序列联合2-adic复杂度的稳定性

赵璐 温巧燕

赵璐, 温巧燕. 现多重周期序列联合2-adic复杂度的稳定性[J]. 电子与信息学报, 2011, 33(1): 185-189. doi: 10.3724/SP.J.1146.2010.00241
引用本文: 赵璐, 温巧燕. 现多重周期序列联合2-adic复杂度的稳定性[J]. 电子与信息学报, 2011, 33(1): 185-189. doi: 10.3724/SP.J.1146.2010.00241
Zhao Lu, Wen Qiao-Yan. Stability of Joint 2-adic Complexity of Multi-periodic Sequence[J]. Journal of Electronics & Information Technology, 2011, 33(1): 185-189. doi: 10.3724/SP.J.1146.2010.00241
Citation: Zhao Lu, Wen Qiao-Yan. Stability of Joint 2-adic Complexity of Multi-periodic Sequence[J]. Journal of Electronics & Information Technology, 2011, 33(1): 185-189. doi: 10.3724/SP.J.1146.2010.00241

现多重周期序列联合2-adic复杂度的稳定性

doi: 10.3724/SP.J.1146.2010.00241
基金项目: 

国家自然科学基金(60873191,60903152, 60821001)和北京市自然科学基金(4072020)资助课题

Stability of Joint 2-adic Complexity of Multi-periodic Sequence

  • 摘要: 该文首次提出了联合k-错2-adic复杂度的概念,并与联合k-错2-adic复杂度一齐作为衡量多重周期序列联合2-adic复杂度稳定性的指标。随后分别研究了两种联合错2-adic复杂度意义下的序列计数问题以及满足2N-1=p,p1p2的周期为N的m重序列联合错2-adic复杂度数学期望的下界并说明了不存在2N-1=pe(e1),的情况。该文的结果对于研究多重周期序列联合2-adic复杂度的稳定性有重要意义。
  • Klapper A and Goresky M. Feedback shift register, 2-adic span, and combiners with Memory[J].Journal of Cryptology.1997, 10(2):111-147[2]Qi Wen-feng and Xu Hong. Partial period distrution of FCSR sequences[J].IEEE Transactions on Information Theory.2003, 49(3):761-765[3]Tian Tian and Qi Wen-feng. On FCSR memory sequences[C]. Sequences and Their Applications, Beijing, China, Sep. 2006, SETA 2006, LNCS 4086: 323-333.[4]Arnault F, Berger T P, and Minier M. Some results on FCSR automata with applications to the security of FCSR-based pseudorandom gerenators[J].IEEE Transactions on Information Theory.2008, 54(2):836-840[5]Arnault F, Berger T P, and Lauradoux C. F-FCSR stream ciphers[C]. New Stream Cipher Designs, Nov. 2008, LNCS 4986: 170-178.[6]Tian Tian and Qi Wen-feng. 2-adic complexity of binary m-sequences[J].IEEE Transactions on Information Theory.2010, 56(1):450-454[7]Hu Hong-gang and Feng Deng-guo. On the 2-adic complexity and the k-error 2-adic complexity of periodic binary sequences[J].IEEE Transactions on Information Theory.2008, 54(2):874-883[8]苏明, 吴功宜. 多重周期序列联合线性复杂度及其快速算法[J]. 计算机工程, 2007, 33(9): 4-6.Su Ming and Wu Gong-yi. Joint linear complexity and its fast algorithm of multi-periodic sequence[J]. Computer Engineering, 2007, 33(9): 4-6.[9]Fu Fang-wei, Niederreiter H, and Su Ming. The expection and variance of the joint linear complexity of random periodic multisequences[J].Journal of Complexity.2005, 21(6):804-822[10]Meidl W, Niederreiter H, and Venkateswarlu A. Error linear complexity measures for multisequences[J].Journal of Complexity.2007, 23(2):169-192[11]Hu Hong-gang and Feng Deng-guo. On the expected value of the joint 2-adic complexity of periodic binary multisequences[C]. Sequences and Their Applications, Beijing, China, Sep. 2006, SETA 2006, LNCS 4086: 199-208.[12]董丽华, 胡予濮, 曾勇. 多重周期二元序列的联合k-错2-adic复杂度[J]. 计算机学报, 2009, 32(6): 1134-1139.Dong Li-hua, Hu Yu-pu, and Zeng Yong. Joint k-error 2-adic complexity for binary periodic multi-sequeces[J].Chinese Journal of Computers.2009, 32(6):1134-1139[13]王磊, 蔡勉, 肖国镇. 周期序列2-adic复杂度的稳定性[J]. 西安电子科技大学学报, 2000, 27(3): 348-350.Wang Lei, Cai Mian, and Xiao Guo-zhen. On stability of 2-adic complexity of periodic sequence[J]. Journal of Xidian University, 2000, 27(3): 348-350.
  • 加载中
计量
  • 文章访问数:  3556
  • HTML全文浏览量:  96
  • PDF下载量:  806
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-15
  • 修回日期:  2010-07-07
  • 刊出日期:  2011-01-19

目录

    /

    返回文章
    返回