高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微多普勒特征的地面目标分类

李彦兵 杜兰 刘宏伟 丁苏颖 关永胜

李彦兵, 杜兰, 刘宏伟, 丁苏颖, 关永胜. 基于微多普勒特征的地面目标分类[J]. 电子与信息学报, 2010, 32(12): 2848-2853. doi: 10.3724/SP.J.1146.2010.00128
引用本文: 李彦兵, 杜兰, 刘宏伟, 丁苏颖, 关永胜. 基于微多普勒特征的地面目标分类[J]. 电子与信息学报, 2010, 32(12): 2848-2853. doi: 10.3724/SP.J.1146.2010.00128
Li Yan-Bing, Du Lan, Liu Hong-Wei, Ding Su-Ying, Guan Yong-Sheng. Ground Targets Classification Based on Micro-Doppler Effect[J]. Journal of Electronics & Information Technology, 2010, 32(12): 2848-2853. doi: 10.3724/SP.J.1146.2010.00128
Citation: Li Yan-Bing, Du Lan, Liu Hong-Wei, Ding Su-Ying, Guan Yong-Sheng. Ground Targets Classification Based on Micro-Doppler Effect[J]. Journal of Electronics & Information Technology, 2010, 32(12): 2848-2853. doi: 10.3724/SP.J.1146.2010.00128

基于微多普勒特征的地面目标分类

doi: 10.3724/SP.J.1146.2010.00128
基金项目: 

国家自然科学基金(60772140,60901067)和中央高校基本科研业务费专项资金联合资助课题

Ground Targets Classification Based on Micro-Doppler Effect

  • 摘要: 轮式履带式车辆目标分类是低分辨雷达地面目标识别研究领域的一个难点。该文基于微多普勒效应原理建立了轮式履带式车辆的雷达回波模型,针对轮式履带式车辆微多普勒调制的不同,提出了一种基于CLEAN算法的特征提取方法,提取了一种描述目标多普勒谱能量分布的能量比特征。基于实测数据使用相关向量机(RVM)和支持向量机(SVM)的识别结果表明该特征具有较好的识别性能,同时对目标速度具有稳健性。
  • Chen V C, Li F, and Ho S S, et al.. Analysis of Micro-Doppler signatures[J].IEEE Proceedings Radar, Sonar Navigation.2003, 150(4):271-276[2]Chen V C, Li F, and Ho S S, et al.. Micro-Doppler effect in radar: phenomenon, model, and simulation study[J].IEEE Transactions on Aerospace and Electronic System.2006, 42(1):2-21[3]Nanzer J A and Rogers R L. Bayesian classification of humans and vehicles using Micro-Doppler signals from a scanning-beam radar[J].IEEE Microwave and Wireless Components Letters.2009, 19(5):338-340[4]李金梁, 王雪松, 刘阳, 等. 雷达目标旋转部件的微Doppler效应[J].电子与信息学报.2009, 31(3):583-587浏览Li Jin-liang, Wang Xue-song, and Liu Yang, et al.. Micro- Doppler effect of rotation structure on radar targets[J].Journal of Electronics Information Technology.2009, 31(3):583-587[5]孙慧霞, 刘峥, 薛宁. 自旋进动目标的微多普勒特征分析[J]. 系统工程与电子技术, 2009, 31(2): 67-70.Sun Hui-xia, Liu Zheng, and Xue Ning. Micro-Doppler analysis of spinning-precession target[J]. Systems Enginering and Electronics, 2009, 31(2): 67-70.[6]Kim Y and Ling H. Human activity classification based on Micro-Doppler signatures using a support vector machine[J].IEEE Transactions on Geoscience and Remote Sensing.2009, 47(5):1328-1337[7]Stove A G and Sykes S R. A Doppler-based automatic target classifier for a battlefield surveillance radar[C]. 2002 International Radar Conference, Edinburgh, UK, Oct 15-17, 2002: 419-423.[8]冀振元, 孟宪德. 战场侦察雷达目标的自动识别[J]. 哈尔滨工业大学学报, 2001, 33(6): 830-833.Ji Zhen-yuan and Meng Xian-de. Automatic identification of targets detected by battlefield scout radar[J]. Journal of Harbin Institute of Technology, 2001, 33(6): 830-833.[9]Tsao J and Steinberg B D. Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique[J].IEEE Transactions on Antennas and Propagation.1988, 36(4):543-556[10]Burges C J C. A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery.1998, 2(2):121-167[11]Tipping M E. Sparse bayesian learning and the relevance vector machine[J].Journal of Machine Learning Research.2001, 1:211-244[12]Duda R O, Hart P E, and Stork D G. Pattern Classification, Second Edition[M]. New York, John Wiley, 2001: 215-281.
  • 加载中
计量
  • 文章访问数:  4227
  • HTML全文浏览量:  152
  • PDF下载量:  1011
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-02
  • 修回日期:  2010-07-16
  • 刊出日期:  2010-12-19

目录

    /

    返回文章
    返回