高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时空关系和关联规则挖掘的上下文信息缺失插补研究

王玉祥 乔秀全 李晓峰 孟洛明

王玉祥, 乔秀全, 李晓峰, 孟洛明. 基于时空关系和关联规则挖掘的上下文信息缺失插补研究[J]. 电子与信息学报, 2010, 32(12): 2913-2918. doi: 10.3724/SP.J.1146.2010.00035
引用本文: 王玉祥, 乔秀全, 李晓峰, 孟洛明. 基于时空关系和关联规则挖掘的上下文信息缺失插补研究[J]. 电子与信息学报, 2010, 32(12): 2913-2918. doi: 10.3724/SP.J.1146.2010.00035
Wang Yu-Xiang, Qiao Xiu-Quan, Li Xiao-Feng, Meng Luo-Ming. An Imputation Technique for Missing Context Data Based on Spatial-temporal and Association Rule Mining[J]. Journal of Electronics & Information Technology, 2010, 32(12): 2913-2918. doi: 10.3724/SP.J.1146.2010.00035
Citation: Wang Yu-Xiang, Qiao Xiu-Quan, Li Xiao-Feng, Meng Luo-Ming. An Imputation Technique for Missing Context Data Based on Spatial-temporal and Association Rule Mining[J]. Journal of Electronics & Information Technology, 2010, 32(12): 2913-2918. doi: 10.3724/SP.J.1146.2010.00035

基于时空关系和关联规则挖掘的上下文信息缺失插补研究

doi: 10.3724/SP.J.1146.2010.00035
基金项目: 

国家自然科学基金(60802034,60672122),高等学校博士学科点专项科研基金(20070013026)和北京市科技新星计划(2008B50)资助课题

An Imputation Technique for Missing Context Data Based on Spatial-temporal and Association Rule Mining

  • 摘要: 上下文信息的缺失是上下文信息处理中不可避免的问题,缺失数据插补方法也是数据挖掘中的研究热点。但是,现有的缺失数据的插补方法不太适合上下文信息这一流数据形式,没有充分利用各传感器采集数据之间的关联性,而且在插补的过程中没有考虑传感器数据的时空关系。为了解决现存的缺失数据插补方法的缺陷和不足,该文提出了基于时空关系和关联规则挖掘的上下文信息缺失插补方法(STARM),对传感数据进行空间化和时间序列化,并生成强关联规则对缺失数据进行插补。最后,通过温度传感器采集数据验证了这一算法合理性和高效性。实验证明,该算法在上下文信息缺失估计的准确性要高于简单线性回归算法(SLR)和EM算法等,而且具有较小的时空开销,能够保证实时应用的服务质量(QoS)。
  • Cool A L. A review of methods for dealing with missing data[C]. Paper presented at the Annual Meeting of the Southwest Educational Research Association, Dallas, TX, 2000: 1-34.[2]Shao Jun and Wang Han-sheng. Confidence intervals based on survey data with nearest neighbor imputation [J]. Statistica Sinica, 2008, 18(1): 281-297.[3]Gu Dong-bing. Distributed EM algorithm for Gaussian mixtures in sensor networks [J].IEEE Transactions on Neural Networks.2008, 19(7):1154-1166[4]Allison P D. Missing data [D]. Thousand Oaks, CA Sage, 2002.[5]Qin Yong-song and Zhang Shi-chao. Empirical likelihood confidence intervals for differences between two datasets with missing data [J].Pattern Recognition Letters.2008, 29(6):803-812[6]庞新生. 分层随机抽样条件下缺失数据的多重插补方法[J]. 统计与信息论坛, 2009, 24(5): 19-21.[7]Pang Xin-sheng. Multiple imputation for missing data in stratified random sampling [J]. Statistics Information Forum, 2009 24(5): 19-21.[8]金勇进, 邵军. 缺失数据的统计处理. 北京: 中国统计出版社, 2009: 155-161.[9]Jin Yong-jin and Shao Jun. Statistical Analysis with Missing Data [M]. Beijing: China Statistics Press, 2009: 155-161.[10]Deshpande A, Guestrin C, Madden S, Hellerstein J, and Hong W. Model-driven data acquisition in sensor networks [C]. Proceedings of the 30th VLDB (Very Large Databases) Conference, Toronto, Canada, 2004: 588-599.[11]Le Gruenwald, Hamed Chok, and Mazen Aboukhamis. Using data mining to estimate missing sensor data[C]. Proceedings of the Seventh IEEE International Conference on Data Mining Workshops, Norman, USA, 2007: 207-212.Nan Jiang. A data imputation model in sensor databases [C]. High Performance Computing and Communications, Third International Conference, HPCC 2007, Houston, USA, September 26-28, 2007: 86-96.[12]Li Y and Parker L E. Classification with missing data in a wireless sensor network[C]. IEEE Southeast Conference, Huntsville, Alabama, April 2008: 533-538.Li Y and Parker L E. A spatial-temporal imputation technique for classification with missing data in a wireless sensor network[C]. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Acropolis Convention Center Nice, France, Sept. 22-26, 2008: 3272-3279.
  • 加载中
计量
  • 文章访问数:  4148
  • HTML全文浏览量:  112
  • PDF下载量:  1053
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-12
  • 修回日期:  2010-07-05
  • 刊出日期:  2010-12-19

目录

    /

    返回文章
    返回