高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于压缩感知信号重建的正则化自适应匹配追踪算法

刘亚新 赵瑞珍 胡绍海 姜春晖

刘亚新, 赵瑞珍, 胡绍海, 姜春晖. 用于压缩感知信号重建的正则化自适应匹配追踪算法[J]. 电子与信息学报, 2010, 32(11): 2713-2717. doi: 10.3724/SP.J.1146.2009.01623
引用本文: 刘亚新, 赵瑞珍, 胡绍海, 姜春晖. 用于压缩感知信号重建的正则化自适应匹配追踪算法[J]. 电子与信息学报, 2010, 32(11): 2713-2717. doi: 10.3724/SP.J.1146.2009.01623
Liu Ya-Xin, Zhao Rui-Zhen, Hu Shao-Hai, Jiang Chun-Hui. Regularized Adaptive Matching Pursuit Algorithm for Signal Reconstruction Based on Compressive Sensing[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2713-2717. doi: 10.3724/SP.J.1146.2009.01623
Citation: Liu Ya-Xin, Zhao Rui-Zhen, Hu Shao-Hai, Jiang Chun-Hui. Regularized Adaptive Matching Pursuit Algorithm for Signal Reconstruction Based on Compressive Sensing[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2713-2717. doi: 10.3724/SP.J.1146.2009.01623

用于压缩感知信号重建的正则化自适应匹配追踪算法

doi: 10.3724/SP.J.1146.2009.01623
基金项目: 

教育部留学回国人员科研启动基金(教外司留[2009]1341号)资助课题

Regularized Adaptive Matching Pursuit Algorithm for Signal Reconstruction Based on Compressive Sensing

  • 摘要: 压缩感知理论是一种充分利用信号稀疏性或者可压缩性的全新的信号采样理论。该理论表明,通过采集少量的信号值就可实现稀疏或可压缩信号的精确重建。该文在研究和总结已有重建算法的基础上,提出了一种新的基于正则化的自适应匹配追踪算法(Regularized Adaptive Matching Pursuit,RAMP)用于压缩感知信号的重建。该算法可在信号稀疏度未知的情况下,通过自适应过程自动调节候选集原子的个数,利用正则化过程实现支撑集的二次筛选,最终实现了信号的精确重建。实验结果表明,在相同测试条件下,该算法的重建效果无论从主观视觉上还是客观数据上均优于其它同类方法。
  • Cands E. Compressive sampling. Proceedings of international congress of mathematicians. Zrich, Switzerland: European Mathematical Society Publishing House, 2006: 1433-1452.[2]Baraniuk R. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.[3]Zhao Rui-zhen, Liu Xiao-yu, and Li Ching-chung, et al.. Wavelet denoising via sparse representation[J].Science in China Series F.2009, 52(8):1371-1377[4]Cands E, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics.2006, 59(8):1207-1223[5]Figueiredo M, Nowak R, and Wright S. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J].IEEE Journal of Selected Topics in Signal Processing.2007, 1(4):586-597[6]Chen S B, Donoho D L, and Saunders M A. Atomic decomposition by basis pursuit[J].SIAM Journal on Scientific Computing.1998, 20(1):33-61[7]Mallat S and Zhang Z. Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing.1993, 41(12):3397-3415[8]Tropp J and Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory.2008, 53(12):4655-4666[9]Needell D and Vershynin R. Greedy signal recovery and un-certainty principles. Proceedings of the Conference on Computational Imaging,San Jose, USA, SPIE, 2008: 1-12.[10]Needell D and Vershynin D. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J].Foundations of Computational Mathematics.2009, 9(3):317-334[11]Donoho D L, Elad M, and Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J].IEEE Transactions on Information Theory.2006, 52(1):6-18[12]Dai W and Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. 2008 5th International Symposium on Turbo Codes and Related Topics, TURBOCODING, Lausanne, Switzerland, 2008: 402-407.Needell D and Tropp J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. ACM Technical Report 2008-01, California Institute of Technology, Pasadena, 2008, 7.[13]Candes E and Tao T. Decoding by linear programming[J].IEEE Transactions on Information Theory.2005, 51(12):4203-4215[14]Thong T Do, Gan Lu, Nguyen, and Tran D. Sparsity adaptive matching pursuit algorithm for practical compressed sensing. Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, 2008, 10: 581-587.[15]Cands E, Romberg J, and Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory.2006, 52(2):489-509
  • 加载中
计量
  • 文章访问数:  5556
  • HTML全文浏览量:  228
  • PDF下载量:  2603
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-22
  • 修回日期:  2010-03-31
  • 刊出日期:  2010-11-19

目录

    /

    返回文章
    返回