Mahler R. Statistical Multisource-Multitarget Information Fusion[M]. Artech House, Boston, 2007: 711-715.[2]Ba-ngu vo, Singh S, and Doucet A. Sequential monte carlo methods for multi-target filtering with random finite sets[J].IEEE Transactions on Aerospace and Electronic Systems.2005, 41(4):1224-1245[3]Tobias M and Lanterman A D. Probability hypothesis density-based multitarget tracking with bistatic range and doppler observations[J].IET, Radar, Sonar and Navigation.2005, 152(3):195-205[4]Jain A K, Murty M N, and Flynn P J. Data clustering: a review[J].ACM Computing Surveys.1999, 31(3):264-323[5]Ba-ngu vo and Wing-kin MA. The gaussian mixture probability hypothesis density filter[J].IEEE Transactions on Signal Processing.2006, 54(11):4091-4104[6]Tobias M and Lanterman A D. Techniques for birth-particle placement in the probability hypothesis density particle filter applied to passive radar[J].IET, Radar, Sonar and Navigation.2008, 2(5):351-365[7]Hoffman J and Mahler R. Multitarget miss distance via optimal assignment[J].IEEE Transactions on Systems, Man and Cybernetics-Part A.2004, 34(3):327-336[8]Mahler R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543.[9]Clark D, Ristic B, and Ba-ngu Vo. PHD Filtering with target amplitude feature[C]. 11th International Conference on Information Fusion. Cologne, Germany, Jun. 30-July 3, 2008: 1-7.[10]Streit R L. PHD intensity filtering is one step of a MAP estimation algorithm for positron emission tomography[C]. Proc of the International Conference on Information Fusion, Seattle, WA, July 6-9, 2009: 308-315.
|