高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯粒子JPDA滤波的多目标跟踪算法

张俊根 姬红兵 蔡绍晓

张俊根, 姬红兵, 蔡绍晓. 基于高斯粒子JPDA滤波的多目标跟踪算法[J]. 电子与信息学报, 2010, 32(11): 2686-2690. doi: 10.3724/SP.J.1146.2009.01549
引用本文: 张俊根, 姬红兵, 蔡绍晓. 基于高斯粒子JPDA滤波的多目标跟踪算法[J]. 电子与信息学报, 2010, 32(11): 2686-2690. doi: 10.3724/SP.J.1146.2009.01549
Zhang Jun-Gen, Ji Hong-Bing, Cai Shao-Xiao. Gaussian Particle JPDA Filter Based Multi-target Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2686-2690. doi: 10.3724/SP.J.1146.2009.01549
Citation: Zhang Jun-Gen, Ji Hong-Bing, Cai Shao-Xiao. Gaussian Particle JPDA Filter Based Multi-target Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2686-2690. doi: 10.3724/SP.J.1146.2009.01549

基于高斯粒子JPDA滤波的多目标跟踪算法

doi: 10.3724/SP.J.1146.2009.01549
基金项目: 

国家自然科学基金(60871074)资助课题

Gaussian Particle JPDA Filter Based Multi-target Tracking

  • 摘要: 在多目标跟踪中,由于观测的不确定性带来数据关联问题,并且,多目标状态空间尺寸的增长带来了维数增大问题,该文提出了一种新的高斯粒子联合概率数据关联滤波算法(GP-JPDAF),在JPDA框架中引入高斯粒子滤波(GPF)的思想,通过高斯粒子而不是高斯量,来近似目标与观测的边缘关联概率,利用GPF计算目标状态的预测及更新分布。将其应用于被动多传感器多目标跟踪,仿真结果表明该算法比MC-JPDAF具有更好的跟踪性能。
  • Bar-Shalom Y and Li X R. Multitarget-Multisensor Tracking: Principles and Techniques[M]. Storrs: YBS Publishing, 1995.[2]Musicki D and Suvorova S . Tracking in clutter using IMM- IPDA-based algorithms[J].IEEE Transactions on Aerospace and Electronic Systems.2008, 44(1):111-126[3]潘泉, 叶西宁, 张洪才. 广义概率数据关联算法[J].电子学报.2005, 33(3):467-472[4]Karlsson R and Gustafsson F. Monte Carlo data association for multiple target tracking[C]. Proceedings of the IEE Seminar on Target Tracking: Algorithms and Applications, Enschede, Netherlands, 2001: 13/1-13/5.[5]Vermaak J, Godsill S J, and Perez P. Monte Carlo filtering for multi-target tracking and data association[J].IEEE Transactions on Aerospace and Electronic Systems.2005, 41(1):309-332[6]Ekman M. Particle filters and data association for multi-target tracking[C]. 2008 11th International Conference on Information Fusion, Cologne, Germany, July 2008: 1-8.[7]Pasula H, Russell S J, Ostland M, and Ritov Y. Tracking many objects with many sensors[C]. Proc. Int. Joint Conf. Artif. Intell., Stock-holm, Sweden, 1999: 1160-1171.[8]Oh S, Russell S, and Sastry S. Markov chain Monte Carlo data association for multi-target tracking[J].IEEE Transactions on Automatic Control.2009, 54(3):481-497[9]Kotecha J H and Djuric P M . Gaussian particle filtering[J].IEEE Transactions on Signal Processing.2003, 51(10):2592-2601[10]Zhang Zhi-qiang, Wu Jian-kang, and Huang Zhi-pei. Wearable sensors for realtime accurate hip angle estimation[C]. 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore, 2008: 2932-2937.[11]Cappe O, Godsill S J, and Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo[J].Proceedings of the IEEE.2007, 95(5):899-924
  • 加载中
计量
  • 文章访问数:  3919
  • HTML全文浏览量:  167
  • PDF下载量:  1697
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-04
  • 修回日期:  2010-06-25
  • 刊出日期:  2010-11-19

目录

    /

    返回文章
    返回