高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非相关判别邻域保持投影的毫米波雷达目标识别

罗磊 李跃华

罗磊, 李跃华. 基于非相关判别邻域保持投影的毫米波雷达目标识别[J]. 电子与信息学报, 2010, 32(11): 2751-2754. doi: 10.3724/SP.J.1146.2009.01534
引用本文: 罗磊, 李跃华. 基于非相关判别邻域保持投影的毫米波雷达目标识别[J]. 电子与信息学报, 2010, 32(11): 2751-2754. doi: 10.3724/SP.J.1146.2009.01534
Luo Lei, Li Yue-Hua. Uncorrelated Discriminant Neighborhood Preserving Projections for Millimeter Wave Radar Target Recognition[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2751-2754. doi: 10.3724/SP.J.1146.2009.01534
Citation: Luo Lei, Li Yue-Hua. Uncorrelated Discriminant Neighborhood Preserving Projections for Millimeter Wave Radar Target Recognition[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2751-2754. doi: 10.3724/SP.J.1146.2009.01534

基于非相关判别邻域保持投影的毫米波雷达目标识别

doi: 10.3724/SP.J.1146.2009.01534
基金项目: 

国家部委基金资助课题

Uncorrelated Discriminant Neighborhood Preserving Projections for Millimeter Wave Radar Target Recognition

  • 摘要: 该文基于流形学习的思想,综合线性判别分析(LDA)及邻域保持投影(NPP)算法的优势,提出了一种新的流形学习算法,即非相关判别邻域保持投影(Uncorrelated Discriminant Neighborhood Preserving Projections, UDNPP)。该算法在保持了邻域几何结构的同时最大化了类间距离,并通过引入一非相关约束条件使得提取的特征向量具有非相关性,减少了冗余信息的干扰。毫米波雷达目标识别实验结果表明,非相关判别邻域保持投影算法相对其它流行的学习算法有更好的性能。
  • Tenenbaum J B, Silva V, and Langford J C. A global geometric framework for nonlinear dimensionality reduction[J].Science.2000, 290(5500):2319-2323[2]Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J].Science.2000, 290(5500):2323-2326[3]Belkin M and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation.2003, 15(6):1373-1396[4]He X F, Yan S C, Hu Y X, Niyogi P, and Zhang H J. Face recognition using Laplacian faces[J].IEEE Transaction on Pattern Analysis and Machine Intelligence.2005, 27(3):328-340[5]He X F, Cai D, Yan S C, and Zhang H J. Neighborhood preserving embedding. Proc. 10th IEEE. Conf. Computer Vision, Beijing, China, 2005, 2: 1208-1213.[6]Pang Y W, Zheng L, and Liu Z K, et al.. Neighborhood preserving projections (NPP): a novel linear dimension reduction method. ICIC 2005, Part I, Lecture Notes in Computer Science, Springer, Berlin, 2005, Vol. 3644: 117-125.[7]Shao J D, Rong G, and Lee J M. Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis[J].Chemometrics and Intelligent Laboratory Systems.2009, 96(1):75-83[8]Kokiopoulou E and Saad Y. Orthogonal neighborhood preserving projections: A projection-based dimensionality reduction technique[J].IEEE Transaction on Pattern Analysis and Machine Intelligence.2007, 29(12):2143-2156[9]Cheng J, Liu Q S, Lu H Q, and Chen Y W. Supervised kernel locality preserving projections for face recognition[J].Neurocomputing.2006, 67(1-4):443-449[10]Yu X L, Wang X G, and Liu B Y. Supervised kernel neighborhood preserving projections for radar target recognition[J].Signal Processing.2008, 88(9):2335-2339[11]Song Y Q, Nie F P, and Zhang C S. Semi-supervised sub-manifold discriminant analysis[J].Pattern Recognition Letters.2008, 29(13):1806-1813[12]Han P Y, Jin A T B, and Abas F S. Neighbourhood preserving discriminant embedding in face recognition[J].Journal of Vision Communication and Image Representation.2009, 20(8):532-542[13]Gui J, Wang C, and Zhu L. Locality preserving discriminant projections. ICIC 2009, Springer, Berlin, 2009, LNAI, Vol. 5755: 566-572.[14]Hu H F. Orthogonal neighborhood preserving discriminant analysis for face recognition[J].Pattern Recognition.2008, 41(6):2045-2054[15]Jin Z, Yang J, Hu Z, and Lou Z. Face recognition based on the uncorrelated discriminant transformation[J].Pattern Recognition.2001, 34(7):1405-1416
  • 加载中
计量
  • 文章访问数:  3888
  • HTML全文浏览量:  132
  • PDF下载量:  676
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-01
  • 修回日期:  2010-03-15
  • 刊出日期:  2010-11-19

目录

    /

    返回文章
    返回