高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于互谱测度法的多通道SAR散射波干扰抑制研究

孙建涛 张平

孙建涛, 张平. 基于互谱测度法的多通道SAR散射波干扰抑制研究[J]. 电子与信息学报, 2010, 32(10): 2371-2376. doi: 10.3724/SP.J.1146.2009.01405
引用本文: 孙建涛, 张平. 基于互谱测度法的多通道SAR散射波干扰抑制研究[J]. 电子与信息学报, 2010, 32(10): 2371-2376. doi: 10.3724/SP.J.1146.2009.01405
Sun Jian-Tao, Zhang Ping. Scattering Interference Mitigation Using Cross Spectral Metric for Multi-channel SAR[J]. Journal of Electronics & Information Technology, 2010, 32(10): 2371-2376. doi: 10.3724/SP.J.1146.2009.01405
Citation: Sun Jian-Tao, Zhang Ping. Scattering Interference Mitigation Using Cross Spectral Metric for Multi-channel SAR[J]. Journal of Electronics & Information Technology, 2010, 32(10): 2371-2376. doi: 10.3724/SP.J.1146.2009.01405

基于互谱测度法的多通道SAR散射波干扰抑制研究

doi: 10.3724/SP.J.1146.2009.01405

Scattering Interference Mitigation Using Cross Spectral Metric for Multi-channel SAR

  • 摘要: 散射波干扰极大地破坏了合成孔径雷达(Synthetic Aperture Radar,SAR)对地物目标的识别,利用快时间STAP(Space Fast-time Adaptive Processing)可以对散射波干扰进行有效抑制。该文针对多通道SAR, 讨论了互谱测度法在散射波干扰抑制中的应用,分析了干扰加噪声协方差矩阵的互谱,仿真讨论了互谱测度法求解的加权矢量对散射波干扰抑制性能的影响,并和基于主分量分析的散射波干扰抑制算法性能进行了比较。仿真结果表明在同样的自由度下,互谱测度法较主分量分析法可以取得较优的散射波干扰抑制性能。
  • [1] Rosenberg L and Gray D A. Anti-jamming techniques for multichannel SAR imaging[J].IEE Proceedings of Radar, Sonar and Navigation.2006, 153(3):234-242 [2] 高彬. 多路径效应下的远距支援干扰压制区[J]. 电子科技大学学报, 2009, 38(1): 9-12. Gao B. Zone for standoff jamming under multipath effect[J]. Journal of University of Electronic Science and Technology of China, 2009, 38(1): 9-12. [3] Hui X and De Lamare R C. Reduced-rank space-time adaptive processing for navigation receivers based on QR decomposition and approximations of basis functions[C]. IEEE 16th International Conference on Digital Signal Processing, Santorini, Greece, 2009: 1-6. [4] Holdsworth D A and Fabrizio G A. HF interference mitigation using STAP with dynamic degrees of freedom allocation[C]. IEEE International Conference on Radar, Adelaide, Australia, 2008: 317-322. [5] Melvin M L. A STAP overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1): 19-35. [6] 王玮, 李少洪, 毛士艺. 降维STAP方法的两种基本形式的比较研究[J].电子与信息学报.2002, 24(9):1225-1232浏览 Wang W, Li S H, and Mao S Y. Comparative study of two basic forms in reduced-rank STAP[J]. Journal of Electronics and Information Technology, 2002, 24(9): 1225-1232. [7] Berger S D and Welsh B M. Selecting a reduced-rank transformation for STAP-a direct form perspective[J].IEEE Transactions on Aerospace and Electronic Systems.1999, 35(2):722-729 [8] Rabideau D J. Clutter and jammer multipath cancellation in airborne adaptive radar[J].IEEE Transactions on Aerospace and Electronic Systems.2000, 36(2):565-583 [9] 张贤达. 矩阵分析与应用[M]. 北京:清华大学出版社,2004: 484-493. [10] Anitori L, Srinivasan R, and Rangaswamy M. Performance of low-rank STAP detectors[C]. EEE Radar Conference, Rome, Italy, 2008: 1-6. [11] Guerci J R and Bergin J S. Principal components, covariance matrix tapers, and the subspace leakage problem[J].IEEE Transactions on Aerospace and Electronic Systems.2002, 38(1):152-162 [12] Rosenberg L. Multichannel synthetic aperture radar[D]. Australia: The University of Adelaide, 2007: 85-110. [13] Ward J. Space-time adaptive processing for airborne radar[R]. Lincoln Labs, MIT, 1994: 59-79.
  • 加载中
计量
  • 文章访问数:  2929
  • HTML全文浏览量:  78
  • PDF下载量:  548
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-29
  • 修回日期:  2010-02-12
  • 刊出日期:  2010-10-19

目录

    /

    返回文章
    返回