高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非平稳背景下的红外小目标检测

刘靳 姬红兵

刘靳, 姬红兵. 基于非平稳背景下的红外小目标检测[J]. 电子与信息学报, 2010, 32(6): 1295-1300. doi: 10.3724/SP.J.1146.2009.01083
引用本文: 刘靳, 姬红兵. 基于非平稳背景下的红外小目标检测[J]. 电子与信息学报, 2010, 32(6): 1295-1300. doi: 10.3724/SP.J.1146.2009.01083
Liu Jin, Ji Hong-bing. IR Small Targets Detection Based on Non-homogeneous Background[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1295-1300. doi: 10.3724/SP.J.1146.2009.01083
Citation: Liu Jin, Ji Hong-bing. IR Small Targets Detection Based on Non-homogeneous Background[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1295-1300. doi: 10.3724/SP.J.1146.2009.01083

基于非平稳背景下的红外小目标检测

doi: 10.3724/SP.J.1146.2009.01083

IR Small Targets Detection Based on Non-homogeneous Background

  • 摘要: 针对非平稳复杂背景下单帧图像的红外小目标检测概率较低的问题,该文提出了一种基于当前残差的改进M估计的红外背景预测和抑制算法。该算法利用M估计的基本模型预测背景,将目标像素和观测噪声视为背景估计的混合干扰,提出与背景图像残差相关的校正函数c()自适应地调整估计增益,从而减小异常样本对背景估计的影响,提高了估计的准确性。同时引入遗忘因子使算法能够适应于非均匀复杂背景的估计,提高了算法的鲁棒性。多组红外图像实验表明:所提算法不仅能够在非平稳背景下有效地估计背景,还能在滤除背景的同时最大程度地保留目标像素的信息,提高了目标的检测概率。
  • Wang Jing, Bao Shang-qi, and Ralph J F, et al.. Detection of small objects in multi-layered infrared images [C]. Signal and Data Processing of Small Targets, 2008. Proceedings of the SPIE, 2008, 6969: 696905-696905-8.[2]Wemett B D. Automatic target detection using vector quantization error [C]. Automatic Target Recognition XVIII. Proceedings of the SPIE, 2008, 6967: 696712-696712-10.[3]宗思光, 王江安. 基于形态学图像融合的目标检测方法 [J]. 光电子激光, 2004, 15(2): 208-211.Zong Si-guang and Wang Jiang-an. Infrared image targets detection based on multi-scale mathematical morphology fusion [J].Journal of OptoelectronicsLaser.2004, 15(2):208-211[4]陈远, 王凌, 冯华君等. 高散射介质后向扩散散射实验的图像预处理 [J]. 光电子激光, 2005, 16(11): 1373-1377.Chen Yuan, Wang Ling, and Feng Hua-jun, et al.. Image pre-processing for diffuse backscattering of polarized light from highly scattering media [J].Journal of OptoelectronicsLaser.2005, 16(11):1373-1377[5]Manolakis D G, Ingle V K, and Kogon S M. Statistical and Adaptive Signal Processing [M]. Boston: McGraw-Hill Science/Engineering/Math, 1999, Chapter 8.[6]Wang P, Tian J W, and Gao C Q. Infrared small target detection using directional high pass filters based on LS-SVM [J].Electronics Letters.2009, 45(3):156-158[7]Tang Zhen-min and Wang Xin. An efficient algorithm for infrared small target detection [C][J].Second International Conference on Information and Computing Science ICIC0.2009, 2:51-54[8]曹瑛, 李志永, 卢晓鹏等. 基于自适应领域双边滤波的点目标检测预处理算法[J].电子与信息学报.2008, 30(8):1909-1912浏览Cao Ying, Li Zhi-yong, and Lu Xiao-peng, et al.. A preprocessing algorithm of point target detection based on temporal-spatial bilateral filter using adaptive neighborhoods [J].Journal of Electronics Information Technology.2008, 30(8):1909-1912[9]Huber P J and Ronchetti E M. Robust Statistics (2nd Ed.) [M]. New York: Wiley, 2009, Chapter 3.[10]Haykin S. Adaptive Filter Theory (4th Ed.) [M]. US, Prentice Hall, 2001, Chapter 8.[11]罗军辉, 姬红兵, 刘靳. 一种基于空间滤波的红外小目标检测算法及其应用[J]. 红外与毫米波学报, 2007, 26(3): 209-212.Luo Jun-hui, Ji Hong-bing, and Liu Jin. Algorithm of IR small targets detection based on spatial filter and its application [J]. Journal of Infrared and Millimeter-wave, 2007, 26(3): 209-212.[12]Braga-Neto U, Choudhary M, and Goutsias J. Automatic target detection and tracking in forward-looking infrared image sequences using morphological connected operators [J].Journal of Electronic Imaging.2004, 13(4):802-813
  • 加载中
计量
  • 文章访问数:  3202
  • HTML全文浏览量:  83
  • PDF下载量:  909
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-13
  • 修回日期:  2010-01-25
  • 刊出日期:  2010-06-19

目录

    /

    返回文章
    返回