高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LLE的分类算法及其在被动毫米波目标识别中的应用

罗磊 李跃华

罗磊, 李跃华. 基于LLE的分类算法及其在被动毫米波目标识别中的应用[J]. 电子与信息学报, 2010, 32(6): 1306-1310. doi: 10.3724/SP.J.1146.2009.00877
引用本文: 罗磊, 李跃华. 基于LLE的分类算法及其在被动毫米波目标识别中的应用[J]. 电子与信息学报, 2010, 32(6): 1306-1310. doi: 10.3724/SP.J.1146.2009.00877
Luo Lei, Li Yue-hua. LLE-Based Classification Algorithm and Its Application to Passive Millimeter Wave Target Recognition[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1306-1310. doi: 10.3724/SP.J.1146.2009.00877
Citation: Luo Lei, Li Yue-hua. LLE-Based Classification Algorithm and Its Application to Passive Millimeter Wave Target Recognition[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1306-1310. doi: 10.3724/SP.J.1146.2009.00877

基于LLE的分类算法及其在被动毫米波目标识别中的应用

doi: 10.3724/SP.J.1146.2009.00877

LLE-Based Classification Algorithm and Its Application to Passive Millimeter Wave Target Recognition

  • 摘要: 该文针对模式识别中的单类分类问题,根据LLE算法思想,考虑数据分布的低维流形,提出了一种单类分类算法。基于流形学习算法发现了被动毫米波信号的短时傅里叶谱中低维流形的存在,并讨论了其特性。将新算法应用于被动毫米波金属目标识别,相对目前流行的分类算法,取得了更好的效果,且算法对输入参数不敏感,在数据混叠程度较高时仍有很好的鲁棒性。
  • Zhou Yong, Li You-wen, and Xia Shi-xiong. An improved KNN text classification algorithm based on clustering. Journal of Computers, 2009, 4(3): 230-237.[2]Fukushima Tamon, Yamamori Kunihito, and Yoshihara Ikuo, et al.. Feature extraction of protein expression levels based on classification of functional foods with SOM[J].Artificial Life and Robotics.2009, 13(2):543-546[3]Park Cheong-hee and Lee Moonhwi. A SVM-based discretization method with application to associative classification[J].Expert Systems with Applications.2009, 36(3):4784-4787[4]Zhang Yong, Ren Yong-gong, and Zhang Zai-yue, et al.. Fuzzy SVDD classifier with positive and negative samples, Journal of Computational Information Systems, 2008, 4(3): 1055-1062.[5]Tenenbaum J B, Silva V, and Langford J C. A global geometric framework for nonlinear dimensionality reduction[J].Science.2000, 290(5500):2319-2323[6]Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J].Science.2000, 290(5500):2323-2326[7]Belkin M and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation.2003,15(6):1373-1396[8]Zhang Zhen-yue and Zha Hong-yuan. Principal manifold and nonlinear dimension reduction via local tangent space alignment[J].SIAM Journal of Scientific Computing.2004, 26(1):313-338[9]Chang H and Yeung D Y. Locally linear metric adaptation with application to semi-supervised clustering and image retrieval[J].Pattern Recognition.2006, 39(7):1253-1264[10]Song Yang-qiu, Nie Fei-ping, and Zhang Chang-shui. Semi-supervised sub-manifold discriminant analysis[J].Pattern Recognition Letters.2008, 29(13):1806-1813[11]Xiang Shi-ming, Nie Fei-ping, and Yang-qiu Song, et al.. Embedding new data points for manifold learning via coordinate propagation[J].Knowledge and Information Systems.2009, 19(2):159-184[12]Jain V and Saul L K. Exploratory analysis and visualization of speech and music by locally linear embedding. Proc of the 6th International Conference of Speech, Acoustics, and Signal Processing, Montreal, Quebec, Canada., May, 2004: 984-987.[13]Peyr G. Manifold models for signals and images[J].Computer Vision and Image Understanding.2009, 113(2):249-260[14]Chern S S, Chen W H, and Lam K S. Lectures on Differential Geometry, New Jersey: World Scientific, 2000: 1-8.
  • 加载中
计量
  • 文章访问数:  3701
  • HTML全文浏览量:  90
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-12
  • 修回日期:  2010-02-09
  • 刊出日期:  2010-06-19

目录

    /

    返回文章
    返回