高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据加权策略的模糊聚类改进算法

唐成龙 王石刚 徐威

唐成龙, 王石刚, 徐威. 基于数据加权策略的模糊聚类改进算法[J]. 电子与信息学报, 2010, 32(6): 1277-1283. doi: 10.3724/SP.J.1146.2009.00857
引用本文: 唐成龙, 王石刚, 徐威. 基于数据加权策略的模糊聚类改进算法[J]. 电子与信息学报, 2010, 32(6): 1277-1283. doi: 10.3724/SP.J.1146.2009.00857
Tang Cheng-long, Wang Shi-gang, Xu Wei. Improved Fuzzy Clustering Algorithm Based on Data Weighted Approach[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1277-1283. doi: 10.3724/SP.J.1146.2009.00857
Citation: Tang Cheng-long, Wang Shi-gang, Xu Wei. Improved Fuzzy Clustering Algorithm Based on Data Weighted Approach[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1277-1283. doi: 10.3724/SP.J.1146.2009.00857

基于数据加权策略的模糊聚类改进算法

doi: 10.3724/SP.J.1146.2009.00857

Improved Fuzzy Clustering Algorithm Based on Data Weighted Approach

  • 摘要: 该文提出了一种数据指数加权的模糊均值聚类策略,引入了指数权因子和影响指数,使得可以在聚类过程中差异化处理各个数据。新策略和现有的Gustafson-Kessel(G-K)算法相结合,提出了一种新的模糊聚类算法DWG-K用于提高聚类质量和挖掘离群点。数据试验表明DWG-K在提高聚类质量方面优于现有的G-K;在离群点挖掘方面,DWG-K对离群点的判定是全局的,离群点的物理意义清楚,且计算效率明显高于当前广泛采用的基于密度的离群点挖掘算法。
  • [1] 蔡自兴, 徐光佑著. 人工智能及其应用. 第三版, 北京: 清华大学出版社, 2004: 10-23. [2] Cai Zi-xing and Xu Guang-you. Artifcial Intelligence: Principles and Applications Third Edition, Beijing: Tsinghua Press, 2004: 10-23. [3] Li Chao-shun, Zhou Jian-zhong, and Li Qing-qing. A fuzzy clustering algorithm based on mutative scale chaos optimization[J].Advances in Neural Networks.ISNN 2008, Berlin/Heidelberg: Springer.2008, 5264:259-267 [4] Runkler T A and Katz C. Fuzzy clustering by particle swarm optimization. Proceedings of 2006 IEEE International Conference on Fuzzy Systems. Vancouver, BC, 2006: 601-608. [5] Chuang Keh-shih, Tzeng Hong-long, and Chen Sharon. Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics. 2006, 30(1): 9-15. [6] Cai Wei-ling, Chen Song-can, and Zhang Dao-qiang. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[J].Pattern Recognition.2007, 40(3):825-838 [7] Pal N R and Bezdek J C. On cluster validity for the Fuzzy c-means Model. IEEE Transactions on Fuzzy Systems. 1995, 3(3): 370-378. [8] Kamber M and Han Jia-wei. Data Mining: Concepts and Techniques. 2rd edition. Singapore: Elsevier Press. 2005: 295-300. [9] Breunig M M, Kriegel Hans-peter, and Raymond T N, et al.. LOF: Identifying density-based local outliers. Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, Texas: ACM Press. 2000, 29: 93-104. [10] Cao Hui, Si?Gang-quan,?Zhu Wen-zhi, and Zhang Yan-bin. Enhancing effectiveness of density-based outlier mining. International Symposiums on Information processing, Moscow, May 23-25, 2008. [11] Ghoting A, Parthasarathy S, and Otey M E. Fast mining of distance-based outliers in high-dimensional dataset[J].Data Mining Knowledge Discovery.2008, 16(3):349-364 [12] Weng Xiao-qing and Shen Jun-yi. Detecting outlier samples in multivariate time series dataset[J].Knowledge-Based Systems.2008, 21(8):807-812 [13] Gustafson E E and Kessel W C. Fuzzy clustering with a fuzzy covariance matrix. Proceedings of IEEE Conference on Decision Control. San Diego, Californian, Piscataway, NJ. 1979: 761-766.
  • 加载中
计量
  • 文章访问数:  3239
  • HTML全文浏览量:  72
  • PDF下载量:  853
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-05
  • 修回日期:  2010-01-07
  • 刊出日期:  2010-06-19

目录

    /

    返回文章
    返回