高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多模型粒子滤波跟踪算法研究

鉴福升 徐跃民 阴泽杰

鉴福升, 徐跃民, 阴泽杰. 多模型粒子滤波跟踪算法研究[J]. 电子与信息学报, 2010, 32(6): 1271-1276. doi: 10.3724/SP.J.1146.2009.00853
引用本文: 鉴福升, 徐跃民, 阴泽杰. 多模型粒子滤波跟踪算法研究[J]. 电子与信息学报, 2010, 32(6): 1271-1276. doi: 10.3724/SP.J.1146.2009.00853
Jian Fu-sheng, Xu Yue-min, Yin Ze-jie. Research of Multiple Model Particle Filter Tracking Algorithms[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1271-1276. doi: 10.3724/SP.J.1146.2009.00853
Citation: Jian Fu-sheng, Xu Yue-min, Yin Ze-jie. Research of Multiple Model Particle Filter Tracking Algorithms[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1271-1276. doi: 10.3724/SP.J.1146.2009.00853

多模型粒子滤波跟踪算法研究

doi: 10.3724/SP.J.1146.2009.00853

Research of Multiple Model Particle Filter Tracking Algorithms

  • 摘要: 针对机动目标跟踪问题,该文设计了一种改进的多模型粒子滤波(EMMPF)算法。与传统的多模型粒子滤波(MMPF)算法按照模型概率分配粒子数不同,该算法可根据用户定义的准则灵活控制各个模型的粒子数,且无需对模型间的粒子进行交互。模型估计和状态估计分开计算,并用模型似然函数更新模型后验概率。与MMPF进行的仿真比较表明,该算法能用较少的粒子数获得更好的滤波性能。
  • Blackman S S and Popoli R. Design and Analysis of Modern Tracking System [M]. Norwood MA: Artech House, 1999: 221-252.[2]Blom H A P and?Bloem E A. Exact Bayesian and particle filtering of stochastic hybrid systems[J].IEEE Transactions on Aerospace and Electronic Systems.2007, 43(1):55-70[3]Liang Yan, Wang Zeng-fu, and Cheng Yong-mei, et al.. Estimation of Markov jump systems with mode observation one-step lagged to state measurement [C]. The 10th International Conference on Information Fusion, Qubec City, Canada, 9-12 July 2007: 1-6.[4]Mcginnity S and Irwin G W. Multiple model bootstrap filter for maneuvering target tracking[J].IEEE Transactions on Aerospace and Electronic Systems.2000, 36(3):1006-1012[5]Driessen H and Boers Y. Efficient particle filter for jump Markov nonlinear systems[J].IEE Proceedings: Radar, Sonar and Navigation.2005, 152(5):323-326[6]Yacine M and Mohand S D. Genetic algorithm combined to IMM approach for tracking highly maneuvering targets[J]. IAENG International Journal of Computer Science, 2008, 35(1): 41-46.[7]刘贵喜, 高恩克, 范春宇. 改进的交互式多模型粒子滤波跟踪算法电子与信息学报[J]..2007, 29(12):2810-2813浏览Liu Gui-xi, Gao En-ke, and Fan Chun-yu. Tracking algorithms based on improved interacting multiple model particle filter[J].Journal of Electronics Information Technology.2007, 29(12):2810-2813[8]Doucet A, Gordon N, and Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems[J].IEEE Transactions on Signal Processing.2001, 49(3):613-624[9]Caron F, Davy M, and Duflos E, et al.. Particle filtering for multisensor data fusion with switching observation models: Application to land vehicle positioning[J].IEEE Transactions on Signal Processing.2007, 55(6):2703-2719[10]Fredrik G, Niclas B, and Urban F, et al.. Particle filters for positioning, navigation and tracking[J].IEEE Transactions on Signal Processing.2002, 50(2):425-437
  • 加载中
计量
  • 文章访问数:  3687
  • HTML全文浏览量:  143
  • PDF下载量:  1412
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-05
  • 修回日期:  2009-09-07
  • 刊出日期:  2010-06-19

目录

    /

    返回文章
    返回