高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非正交联合对角化盲分离算法的可辨识性研究

张延良 楼顺天 张伟涛

张延良, 楼顺天, 张伟涛. 非正交联合对角化盲分离算法的可辨识性研究[J]. 电子与信息学报, 2010, 32(5): 1066-1070. doi: 10.3724/SP.J.1146.2009.00750
引用本文: 张延良, 楼顺天, 张伟涛. 非正交联合对角化盲分离算法的可辨识性研究[J]. 电子与信息学报, 2010, 32(5): 1066-1070. doi: 10.3724/SP.J.1146.2009.00750
Zhang Yan-liang, Lou Shun-tian, Zhang Wei-tao. A Study of Identifiability for Blind Signal Separation via Nonorthogonal Joint Diagonalization[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1066-1070. doi: 10.3724/SP.J.1146.2009.00750
Citation: Zhang Yan-liang, Lou Shun-tian, Zhang Wei-tao. A Study of Identifiability for Blind Signal Separation via Nonorthogonal Joint Diagonalization[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1066-1070. doi: 10.3724/SP.J.1146.2009.00750

非正交联合对角化盲分离算法的可辨识性研究

doi: 10.3724/SP.J.1146.2009.00750

A Study of Identifiability for Blind Signal Separation via Nonorthogonal Joint Diagonalization

  • 摘要: 该文从非正交联合对角化的唯一性条件出发,研究了盲分离算法的可辨识性问题。由接收信号的二阶统计量和高阶累积量分别组成的目标矩阵具有可对角化的结构,因此可以用非正交联合对角化的方法解决盲分离问题。指出非正交联合对角化的唯一存在条件是:由对角矩阵中相同位置的对角元素所组成的向量两两线性无关。从该条件出发推导出基于二阶统计量的非正交联合对角化算法实现盲分离的充分必要条件是源信号自相关函数的形状不同,基于高阶累积量的算法实现盲分离的充分必要条件是源信号中没有高斯信号,从而为运用非正交联合对角化解决盲分离问题提供了理论指导。数值仿真试验验证了结论的正确性。
  • Cardoso J F and Souloumiac A. Blind beamforming for non Gaussian signals[J].IEE Proceedings, Part F: Radar and Signal Processing.1993, 140(6):362-370[2]Belouchrani A, Meraim K, Cardoso J F, and Moulines E. A blind source separation technique using second-order statistics[J].IEEE Transactions on Signal Processing.1997, 45(2):434-444[3]Yeredor A. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation[J].IEEE Transactions on Signal Processing.2002, 50(7):1545-1553[4]Ziehe A, Laskov P, Nolte G, and Mller K R.A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation[J]. Journal of Machine Learning Research, 2004, 5(12): 777-800.[5]Li X L and Zhang X D. Nonorthogonal joint diagonalization free of degenerate solution[J].IEEE Transactions on Signal Processing.2007, 55(5):1803-1814[6]Wang Fu-xiang, Liu Zhong-kan, and Zhang Jun. Nonorthogonal joint diagonalization algorithm based on trigonometric parameterization[J].IEEE Transactions on Signal Processing.2007, 55(11):5299-5308[7]Souloumiac A. Non-orthogonal joint diagonalization by combining givens and hyperbolic rotations[J].IEEE Transactions on Signal Processing.2009, 57(6):2222-2231[8]Zhang Hua, Feng Da-zheng, and Zheng Wei-xing. A study of identifiability for blind source separation via nonorthogonal joint diagonalization[C]. IEEE International Symposium on Circuits and Systems, Seattle, Washington, USA, 2008: 3230-3233.[9]Comon P. Canonical tensor decompositions[R]. Technology report, Laboratory of Information Signal System, French National Center for Scientific Research, June, 2004.[10]Giorgio T and Rasmus B. A comparison of algorithms for tting the PARAFAC model[J].Computational Statistics and Data Analysis.2006, 50(7):1700-1734[11]De Lathauwer L. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization[J]. SIAM Journal on Matrix Analysis and Applications, 2006, (28): 642-666.[12]李细林. 盲信号分离中的联合对角化和相位恢复问题研究[D]. [博士论文],清华大学,2008.[13]Li Xi-lin. Studies on joint diagonalization and phase recovery in blind soure separation[D]. [Ph.D. dissertation], Tsinghua University, 2008.[14]Ten Berge J M F and Sidiropoulos N D. On uniqueness in CANDECOMP/PARAFAC[J]. Psychometrika, 2002, (67): 399-409.[15]Cao Xi-ren and Liu Ruey-wen. General approach to blind source separation[J].IEEE Transactions on Signal Processing.1996, 44(3):562-571
  • 加载中
计量
  • 文章访问数:  4172
  • HTML全文浏览量:  105
  • PDF下载量:  996
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-15
  • 修回日期:  2009-12-01
  • 刊出日期:  2010-05-19

目录

    /

    返回文章
    返回