高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进投影梯度非负矩阵分解的单训练样本特征提取研究

高涛 何明一

高涛, 何明一. 改进投影梯度非负矩阵分解的单训练样本特征提取研究[J]. 电子与信息学报, 2010, 32(5): 1121-1125. doi: 10.3724/SP.J.1146.2009.00622
引用本文: 高涛, 何明一. 改进投影梯度非负矩阵分解的单训练样本特征提取研究[J]. 电子与信息学报, 2010, 32(5): 1121-1125. doi: 10.3724/SP.J.1146.2009.00622
Gao Tao, He Ming-yi. Using Improved Non-negative Matrix Factorization with Projected Gradient for Single-Trial Feature Extraction[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1121-1125. doi: 10.3724/SP.J.1146.2009.00622
Citation: Gao Tao, He Ming-yi. Using Improved Non-negative Matrix Factorization with Projected Gradient for Single-Trial Feature Extraction[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1121-1125. doi: 10.3724/SP.J.1146.2009.00622

改进投影梯度非负矩阵分解的单训练样本特征提取研究

doi: 10.3724/SP.J.1146.2009.00622

Using Improved Non-negative Matrix Factorization with Projected Gradient for Single-Trial Feature Extraction

  • 摘要: 人脸识别是当前人工智能和模式识别的研究热点。非负矩阵分解(NMF)能够反映样本的局部的内在的联系,可用于单样本特征提取,但时间复杂度较高。投影梯度(Projected Gradient,PG)优化方法大幅降低了NMF约束优化迭代问题的时间复杂度,但是单训练样本存在对本类信息量描述不足的缺点。为此,该文提出了一种基于改进的投影梯度非负矩阵分解 (Improved Projected Gradient Non-negative Matrix Factorization,IPGNMF) 的单训练样本特征提取方法。在进行PGNMF算子之前,先将训练样本作Gabor分解,分解后的Gabor子图像在各个方向上可以更加丰富的描述样本特征,最后将各个Gabor子图像的PGNMF特征进行融合,作为最终的识别特征。在对人脸库ORL,YEL与FERET的识别实验中,与经典的特征提取方法比较,证明了可以有效地解决单训练样本人脸识别的问题。
  • Zhu Yulian, Liu Jun, and Chen Songcan. Semi-random subspace method for face recognition[J]. Image and Vision Computing, 2009, 9(26): 1-13.[2]Gao Quan-xue, Zhang Lei, and Zhang David. Face recognition using FLDA with single training image per person[J].Applied Mathematics and Computation.2008, 205(2):726-734[3]李瑞东, 祝磊, 余党军, 陈偕雄. 基于判别公共向量的单训练样本人脸识别[J]. 浙江大学学报, 2008, 35(2): 181-184.Li Rui-dong, Zhu Lei, Yu Dang-jun, and Chen Xie-xiong. Making discriminative common vectors applicable to face recognition with one training image per person[J]. Journal of ZheJiang University, 2008, 35(2): 181-184.[4]Daugman J G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two2dimensional visual cortical filters [J].Journal of the Optical Society of America (A.1985, 2(7):1160-1169[5]李乐, 章毓晋. 非负矩阵算法综述[J]. 电子学报, 2008, 36(4): 737-743.Li Le and Zhang Yu-jin. A survey on algorithms of non-negative matrix factorization[J]. Acta Electronica Sinica, 2008, 36(4): 737-743.[6]Lee Ju-Hong, Park Sun, Ahna Chan-Min, and Kim Daeho. Automatic generic document summarization based on non-negative matrix factorization[J]. Information Processing and Management, 2008, 6(2): 20-34.[7]Lohmann G, Volz K G, and Ullsperger M. Using non-negative matrix factorization for single-trial analysis of fMRI data[J].NeuroImage.2007, 37(4):1148-1160[8]Lin C J. Projected gradient methods for non-negative matrix factorization[J].Neural Computation.2007, 19(10):2756-2779
  • 加载中
计量
  • 文章访问数:  4122
  • HTML全文浏览量:  105
  • PDF下载量:  1309
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-04-28
  • 修回日期:  2009-11-05
  • 刊出日期:  2010-05-19

目录

    /

    返回文章
    返回