高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱相关非高斯环境下基于局部最佳检测器的伪码捕获方法

沈锋 孙枫

沈锋, 孙枫. 弱相关非高斯环境下基于局部最佳检测器的伪码捕获方法[J]. 电子与信息学报, 2010, 32(4): 811-815. doi: 10.3724/SP.J.1146.2009.00475
引用本文: 沈锋, 孙枫. 弱相关非高斯环境下基于局部最佳检测器的伪码捕获方法[J]. 电子与信息学报, 2010, 32(4): 811-815. doi: 10.3724/SP.J.1146.2009.00475
Shen Feng, Sun Feng. PN Code Acquisition Based on the Locally Optimum Detector in Weakly Dependent Non-Gaussian Impulsive Channels[J]. Journal of Electronics & Information Technology, 2010, 32(4): 811-815. doi: 10.3724/SP.J.1146.2009.00475
Citation: Shen Feng, Sun Feng. PN Code Acquisition Based on the Locally Optimum Detector in Weakly Dependent Non-Gaussian Impulsive Channels[J]. Journal of Electronics & Information Technology, 2010, 32(4): 811-815. doi: 10.3724/SP.J.1146.2009.00475

弱相关非高斯环境下基于局部最佳检测器的伪码捕获方法

doi: 10.3724/SP.J.1146.2009.00475

PN Code Acquisition Based on the Locally Optimum Detector in Weakly Dependent Non-Gaussian Impulsive Channels

  • 摘要: 该文为解决弱相关非高斯噪声环境下的伪码捕获问题,提出了一种基于局部最佳检测算法的伪码捕获方法,将伪码捕获等价为假设检验问题,将弱相关非高斯噪声建模为一阶滑动平均SS噪声模型,利用局部最佳检测算法推导出弱相关非高斯噪声环境下的伪码捕获检测统计量,在此基础上对检测统计量进行了简化,给出了其实现结构,并与传统的伪码捕获方法进行了性能仿真对比,仿真结果表明该文所提出的捕获方法在弱相关非高斯噪声环境下检测性能有较大幅度的提高,且非高斯噪声脉冲特性越明显,所设计的检测器优势越明显。
  • Oh Hae-Sock and Han Dong-Seog. An adaptive double-dwellPN code acquisition system in DS-CDMA communications[J].Signal Processing.2005, 85(12):2327-2337[2]Choi K, Cheun K, and Jung T. Adaptive PN code acquisitionusing instantaneous power-scaled detection threshold underRayleigh fading and pulsed Gaussian noise jamming[J].IEEETransactions on Communication.2002, 50(8):1232-1235[3]Wang You guo and Wu Le nan. Nonlinear signal detectionfrom an array of threshold devices for non-Gaussian noise[J].Digital Signal Processing.2007, 17(26):76-89[4]Moustakides G V and Thomas J B. Min-max detection ofweak signals in -mixing noise[J].IEEE Transactions onInformation Theory.1984, 30(3):529-537[5]Hao Chen, Varshney P K, and Kay S M. Theory of thestochastic resonance effect in signal detection: Part IFixeddetectors. Signal Processing, 2007, 55(7): 3172-3184.[6]Kokkinos E and Maras A M. Locally optimum Bayesdetection in nonadditive first-order Markov noise[J].IEEETransactions on Communication.1999, 47(3):387-396[7]Song I, Bae J, and Kim S Y. Advanced Theory of SignalDetection. New York: Springer-Verlag, 2002: 56-59.[8]Yang X, Poor H V, and Petropulu A P. Memorylessdiscrete-time signal detection in long-range dependent noise[J].IEEE Transactions on Signal Process.2004, 52(6):1607-1619[9]Kim Kwanf Soon, Kim Sun Yong, Song Iickho, and Park SoRyoung. Locally optimum detector for correlated randomsignals in a weakly dependent noise model[J].Signal Processing.1999, 74(3):317-322[10]Kim In Jong, Park So Ryoung, and Song Iickho. Detectionschemes for weak signals in first-order moving average ofimpulsive noise. IEEE Transactions on VechicularTechnology, 2007, 56(1): 126-133.[11]Lee Jumi, Song Iickho, Kwon Hyoungmoon, and Kim HongJik. Locally optimum detection of signal in multiplicative andfirst-order markov additive noises[J].IEEE Transactions onInformation Theory.2008, 54(1):219-234[12]Yoon S, Song I, and Kim S Y. Code acquisition for DS/SScommunications in non-gaussian impulsive channels[J].IEEETransactions on Communication.2004, 52(2):187-190[13]Wang Jin wei, Liu Guang jie, and Dai Yue wei. Locallyoptimum detection for Barni's multiplicative watermarkingin DWT domain[J].Signal Processing.2008, 88(1):117-130[14]Maras A M. Non-parametric adaptive locally asymptoticallyoptimum detection in additive noise. Journal of the FranklinInstitute, 2005, 342(5): 565-581.[15]Roy A and Doherty J F. Signal detection in an impulsivenoise environment using locally optimum detection.Vehicular Technology Conference, Dublin, 2007: 1022-1026.[16]Xin Jing min, Zheng Nan ning, and Sano A. Simple andefficient nonparametric method for estimating the number ofsignals without eigendecomposition. Signal Processing, 2007,55(4): 1405-1420.
  • 加载中
计量
  • 文章访问数:  3414
  • HTML全文浏览量:  90
  • PDF下载量:  742
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-04-07
  • 修回日期:  2009-09-17
  • 刊出日期:  2010-04-19

目录

    /

    返回文章
    返回