高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vague等价关系与Vague划分之间的关系研究

梁家荣

梁家荣. Vague等价关系与Vague划分之间的关系研究[J]. 电子与信息学报, 2010, 32(4): 1008-1011. doi: 10.3724/SP.J.1146.2009.00392
引用本文: 梁家荣. Vague等价关系与Vague划分之间的关系研究[J]. 电子与信息学报, 2010, 32(4): 1008-1011. doi: 10.3724/SP.J.1146.2009.00392
Liang Jia-rong. The Research of the Relationship between Vague Equivalence Relations and Vague Partitions[J]. Journal of Electronics & Information Technology, 2010, 32(4): 1008-1011. doi: 10.3724/SP.J.1146.2009.00392
Citation: Liang Jia-rong. The Research of the Relationship between Vague Equivalence Relations and Vague Partitions[J]. Journal of Electronics & Information Technology, 2010, 32(4): 1008-1011. doi: 10.3724/SP.J.1146.2009.00392

Vague等价关系与Vague划分之间的关系研究

doi: 10.3724/SP.J.1146.2009.00392

The Research of the Relationship between Vague Equivalence Relations and Vague Partitions

  • 摘要: 根据vague集具有真假隶属度的特点,该文提出了基于t-模和t-余模的(T, S)-vague 等价关系和t-模对界定的概念。建立了(T, S)-vague等价关系与(T, S)-vague划分之间的一一对应关系。通过引进(T, S)-vague划分的(T*, S*)交的概念,给出了X上任何两个(T, S)-vague划分的(T*, S*)交仍然是一个(T, S)-vague划分的充要条件。
  • Acampora G and Loia V. A proposal of ubiquitous fuzzycomputing for Ambient Intelligence[J].Information Sciences.2008, 178(3):631-646[2]Lin F, Ying H, and MacArthur R D, et al.. Decision makingin fuzzy discrete event systems[J].Information Sciences.2007,177(18):3749-3763[3]Liu Y J and Wang W. Adaptive fuzzy control for a class ofuncertain nonaffine nonlinear systems[J].Information Sciences.2007, 177(18):3901-3917[4]Mitchell H B. Pattern recognition using type-II fuzzy sets[J].Information Sciences.2005, 170(2):409-418[5]Atanassov K. Intuitionistic fuzzy sets[J].Fuzzy Sets andSystems.1986, 20(2):87-96[6]Gau W L and Buehrer D J. Vague Sets[J].IEEE Transactionson Systems, Man and Cybernetics.1993, 23(2):610-614[7]Bustince H and Burillo P. Vague sets are intuitionistic fuzzysets[J].Fuzzy Sets and System.1996, 79(2):403-405[8]Hung W L and Yang M S. Similarity measures ofintuitionistic fuzzy sets based on Hausdorff distance. PatternRecognition Letters, 2004, 25(14): 1603-1611.[9]Li D F and Cheng C T. New similarity measures ofintuitionistic fuzzy sets and application to patternRrecognitions. PatternRrecognition Letters, 2002, 23(2):221-225.[10]Liang Z Z and Shi P F. Similarity measures on intuitionisticfuzzy sets[J].Pattern Recognition Letter.2003, 24(15):2687-2693[11]Vlachos I K and Sergiadis G D. Intuitionistic fuzzyinformation-applications to pattern recognition. PatternRecognition Letters, 2007, 28(2): 197-206.[12]Xu Z S, Chen J, and Wu J J. Clustering algorithm forintuitionistic fuzzy sets[J].Information Sciences.2008, 178(19):3775-3790[13]Lin L, Yuan X H, and Xia Z Q. Multi-criteria fuzzydecision-making methods based on intuitionistic fuzzy sets[J].Journal of Computer and System Sciences.2007, 73(1):84-88[14]Liu H W and Wang G J. Multi-criteria decision-makingmethods based on intuitionistic fuzzy sets[J].European Journalof Operational Researc.2007, 179(2):220-233[15]Pankowska A and Wygralak M. General IF-sets withtriangular norms and their applications to group decisionmaking[J].Information Science.2006, 176(18):2713-2754[16]De S K, Biswas R, and Roy A R. An application ofintuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets andSystems, 2002, 117(2): 209-213.[17]Szmidt E and Kacprzyk J. A similarity measure forintuitionistic fuzzy sets and its application in supportingmedical diagnostic reasoning. Lecture Notes in ArfificialIntelligence, 2004, 3070(2): 388-393.[18]Xu Z H. Intuitionistic preference relations and theirapplication in group decision making[J].Information Sciences.2007, 177(11):2363-2379[19]Deschrijver G and Kerre E E. On the composition ofintuitionistic fuzzy relations[J].Fuzzy Sets and Systems.2003,136(3):333-361[20]Bustince H and Burillo P. Structures on intuitionistic fuzzyrelations[J].Fuzzy Sets and Systems.1996, 78(3):293-303[21]Hung W L and Wu J W. Correlation of intuitionistic fuzzysets by centroid method[J].Information Sciences.2002, 144(2):219-225[22]Alaca C, Turkoglu D, and Yildiz C. Fixed points inintuitionistic fuzzy metric spaces[J].Chaos, Solitons Fractals.2006, 29(5):1073-1078[23]C' iri c' L B, Sjes伾 i c' S N, and Sheok J. The existencetheorems for fixed and periodic points of nonexpansivemappings in intuitionistic fuzzy metric spaces[J].Chaos,Solitons Fractals.2008, 37(3):781-791[24]Mohamad A. Fixed-point theorems in intuitionistic fuzzymetric spaces[J].Chaos, Solitons Fractals.2007, 34(5):1689-1695[25]Sezer S. Vague groups and generalized vague subgroups onthe basis of ([0, 1], [J]., 伻 ). Information Sciences.2005,174(1):123-142[26]Lupianez F G. Nets and filters in intuitionistic fuzzytopological spaces[J].Information Sciences.2006, 176(16):2396-2404[27]Park J H and Park J K. Hausdorffness on generalizedintuitionistic fuzzy filters. Information Sciences, 2004, 168(1):95-110.[28]椑壠.丆.椡丆屴..丆Vague .暘. .嶼婘壢妛, 2009, 36(11):146-151.Liang J R, Liu L, and Wu H J. Vague partitions. ComputerSciences, 2009, 36(11): 146-151.
  • 加载中
计量
  • 文章访问数:  3672
  • HTML全文浏览量:  94
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-23
  • 修回日期:  2009-11-02
  • 刊出日期:  2010-04-19

目录

    /

    返回文章
    返回