高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IMM迭代扩展卡尔曼粒子滤波跟踪算法

张俊根 姬红兵

张俊根, 姬红兵. IMM迭代扩展卡尔曼粒子滤波跟踪算法[J]. 电子与信息学报, 2010, 32(5): 1116-1120. doi: 10.3724/SP.J.1146.2009.00298
引用本文: 张俊根, 姬红兵. IMM迭代扩展卡尔曼粒子滤波跟踪算法[J]. 电子与信息学报, 2010, 32(5): 1116-1120. doi: 10.3724/SP.J.1146.2009.00298
Zhang Jun-gen, Ji Hong-bing. IMM Iterated Extended Kalman Particle Filter Based Target Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1116-1120. doi: 10.3724/SP.J.1146.2009.00298
Citation: Zhang Jun-gen, Ji Hong-bing. IMM Iterated Extended Kalman Particle Filter Based Target Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1116-1120. doi: 10.3724/SP.J.1146.2009.00298

IMM迭代扩展卡尔曼粒子滤波跟踪算法

doi: 10.3724/SP.J.1146.2009.00298

IMM Iterated Extended Kalman Particle Filter Based Target Tracking

  • 摘要: 该文提出了一种交互式多模型(IMM)迭代扩展卡尔曼粒子滤波机动目标跟踪算法。该算法在多模型中使用了改进的粒子滤波器,通过对迭代扩展卡尔曼滤波(IEKF)的测量更新按照高斯牛顿方法进行修正,减小了非线性滤波带来的线性化误差,然后利用修正的IEKF来产生粒子滤波的重要性密度函数,使其融入最新观测信息。最后将所提算法与交互式多模型粒子滤波(IMMPF)进行了比较,仿真结果表明该算法具有更好的跟踪性能。
  • Mazor E, Averbuch A, and Bar-Shalom Y, et al.. Interacting multiple model methods in target tracking: a survey[J].IEEE Transactions on Aerospace and Electronic Systems.1998, 34(1):103-123[2]Kim Byung-doo and Lee Ja-sung. IMM algorithm based on the analytic solution of steady state Kalman filter for radar target tracking[C]. IEEE International Radar Conference, Arlington, Virginia, USA, May, 2005: 757-762.[3]Cappe O, Godsill S J, and Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo[J].Proceedings of the IEEE.2007, 95(5):899-924[4]Boers Y and Driessen J N. Interacting multiple model particle filter[J].IEE Proceedings-Radar Sonar Navigation.2003, 150(5):344-349[5]Morelande M R and Challa S. Maneuvering target tracking in clutter using particle filters[J].IEEE Transactions on Aerospace and Electronic Systems.2005, 41(1):252-270[6]Arulampalam M S, Maskell S, and Gordon N, et al.. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing.2002, 50(2):174-188[7]李良群, 姬红兵, 罗军辉. 迭代扩展卡尔曼粒子滤波器[J]. 西安电子科技大学学报, 2007, 34(2): 233-238.Li Liang-qun, Ji Hong-bing, and Luo Jun-hui. Iterated extended Kalman particle filtering[J]. Journal of Xidian University, 2007, 34(2): 233-238.[8]Bell B M and Cathey F W. The iterated Kalman filter update as a Gauss-Newton method[J].IEEE Transactions on Automatic Control.1993, 38(2):294-297[9]Johnston L A and Krishnamurthy V. Derivation of a sawtooth iterated extended Kalman smoother via the AECM algorithm[J].IEEE Transactions on Signal Processing.2001, 49(9):1899-1909[10]杨争斌, 郭福成, 周一宇. 迭代IMM机动目标被动单站跟踪算法[J]. 宇航学报, 2008, 29(1): 304-310.Yang Zheng-bin, Guo Fu-cheng, and Zhou Yi-yu. Iterated IMM algorithm for maneuvering target tracking by a single passive observer[J]. Journal of Astronautics, 2008, 29(1): 304-310.[11]Van der R and Doucet Merwe F, et al.. The unscented particle filter[R]. Technical Report CUED/F-INFENG/TR 380, Cambridge University Engineering Department, Cambridge, England, 2000.
  • 加载中
计量
  • 文章访问数:  4248
  • HTML全文浏览量:  114
  • PDF下载量:  2076
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-09
  • 修回日期:  2010-01-29
  • 刊出日期:  2010-05-19

目录

    /

    返回文章
    返回