高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分形可变步长LMS算法的海杂波中微弱目标检测

刘宁波 关键 张建

黄水龙, 王志华. 快速建立时间的自适应锁相环[J]. 电子与信息学报, 2007, 29(6): 1492-1495. doi: 10.3724/SP.J.1146.2005.01548
引用本文: 刘宁波, 关键, 张建. 基于分形可变步长LMS算法的海杂波中微弱目标检测[J]. 电子与信息学报, 2010, 32(2): 371-376. doi: 10.3724/SP.J.1146.2009.00017
Huang Shui-long, Wang Zhi-hua. An Adaptive PLL Architecture to Achieve Fast Settling Time[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1492-1495. doi: 10.3724/SP.J.1146.2005.01548
Citation: Liu Ning-bo, Guan Jian, Zhang Jian. Low-Observable Target Detection in Sea Clutter Based on Fractal-based Variable Step-Size LMS Algorithm[J]. Journal of Electronics & Information Technology, 2010, 32(2): 371-376. doi: 10.3724/SP.J.1146.2009.00017

基于分形可变步长LMS算法的海杂波中微弱目标检测

doi: 10.3724/SP.J.1146.2009.00017

Low-Observable Target Detection in Sea Clutter Based on Fractal-based Variable Step-Size LMS Algorithm

  • 摘要: 该文主要研究了基于Hurst指数与可变步长LMS算法相结合的分析方法在海杂波微弱目标检测中的应用。一直以来,分形理论与统计理论是分别应用到目标检测中的,该文将分形可变步长LMS算法引入到海杂波微弱目标检测中,并在此基础上提出一个海杂波中的微弱目标检测模型,初步实现了基于LMS算法的检测方法与基于单一分形特征的检测方法的结合。最后,采用X波段雷达实测海杂波数据进行验证,结果表明该检测模型具有良好的检测海杂波中微弱目标的能力。
  • Thayaparan T and Kennedy S. Detection of a manoeuvring air target in sea-clutter using joint time-frequency analysis techniques[J].IEE Proceedings-Radar, Sonar and Navigation.2004, 151(1):19-30[2]Davidson G and Griffiths H D. Wavelet detection scheme for small targets in sea clutter[J].Electronics Letters.2002, 38(19):1128-1130[3]Leung H, Dubash N, and Xie N. Detection of small objects in clutter using a GA-RBF neural network[J].IEEE Transactions on Aerospace and Electronic Systems.2002, 38(1):98-118[4]严颂华, 吴世才, 吴雄斌. 基于神经网络的高频地波雷达目标到达角估计[J].电子与信息学报.2008, 30(2):339-342浏览Yan Song-hua, Wu Shi-cai, and Wu Xiong-bin. DOA estimation based on neural network for HFGWR[J].Journal of Electronics Information Technology.2008, 30(2):339-342[5]Lin C P, Sano M, and Sayama S, et al.. Detection of radar targets embedded in sea ice and sea clutter using fractals, wavelets, and neural networks[J]. IEICE Transactions on Communications, 2000, E83-B(9): 1916-1929.[6]田妮莉, 喻莉. 一种基于小波变换和FIR神经网络的广域网网络流量预测模型[J].电子与信息学报.2008, 30(10):2499-2502浏览Tian Ni-li and Yu Li. A WAN network traffic prediction model based on wavelet transform and FIR neural networks[J].Journal of Electronics Information Technology.2008, 30(10):2499-2502[7]Lo T, Leung H, and Haykin S. Fractal characterization of sea-scattered signals and detection of sea-surface targets[J]. IEE Proceedings-F, 1993, 140(4): 243-250.[8]Zhao Min, Fan Yin-hai, and Lv Jin. Chaotic time series gray correlation local forecasting method based on fractal theory[C]. 2007 3rd International Workshop on Signal Design and Its Applications in Communications, 2007: 39-43.[9]Lin C P, Sano M, and Sekine M. Detection of radar targets by means of fractal error[J]. IEICE Transactions on Communications, 1997, E80-B(11): 1741-1748.[10]高远. 海杂波特性分析与基于多重分形理论的目标检测方法研究. [硕士论文], 西安: 电子科技大学, 2007.[11]Gao Yuan. Research on sea clutter characteristic and target detection based on multifractal theory[D]. [MA.dissertation], Xian: Xidian University, 2007.[12]陈双平, 郑浩然, 刘金霞, 等. 离散稳恒信号的多重分形谱的计算及其应用[J].电子与信息学报.2007, 29(5):1054-1057浏览Chen Shuang-ping, Zheng Hao-ran, and Liu Jin-xia, et al.. Computation and applications of multi-fractal to discrete stationary signals[J].Journal of Electronics Information Technology.2007, 29(5):1054-1057[13]Gupta A and Joshi S D. Variable step-size LMS algorithm for fractal signals[J].IEEE Transactions on Signal Processing.2008, 56(4):1411-1419[14]Gupta A and Joshi S D. Characterization of discrete-time fractional brownian motion[C]. IEEE Annual India Conference, New Delhi, India, 2006: 1-6.[15]Drosopoulos A. Description of the OHGR database[R]. Tech. Note No. 94-14, Defence Research Establishment Ottawa, 1994: 1-30.[16]Hu Jing, Tung Wen-Wen, and Gao Jian-bo, et al.. Detection of low observable targets within sea clutter by structure function based multifractal analysis[J].IEEE Transactions on Antennas and Propagation.2006, 54(1):136-143[17]Hsieh Chin-Yuan, Fung A K, and Nesti G, et al.. A further study of the IEM surface scattering model[J].IEEE Transactions on Geoscience and Remote Sensing.1997, 35(4):901-908
  • 期刊类型引用(8)

    1. 刘业民,刘晓娴,袁露,曾广论,吕汉峰. 前斜视SAR成像中几何校正问题研究. 航天电子对抗. 2023(02): 13-18 . 百度学术
    2. XIONG Xuying,LI Gen,MA Yanheng,CHU Lina. New slant range model and azimuth perturbation resampling based high-squint maneuvering platform SAR imaging. Journal of Systems Engineering and Electronics. 2021(03): 545-558 . 必应学术
    3. 丁柏圆,闫海鹏,黄光泉,魏子杰,刘承禹. 高速平台下动目标高分辨成像方法研究. 遥测遥控. 2021(06): 98-106 . 百度学术
    4. 党彦锋,梁毅,张罡,梁宇杰,张玉洪. 机动平台俯冲大斜视SAR脉冲重复频率设计. 系统工程与电子技术. 2020(03): 575-581 . 百度学术
    5. 孙宁霄,吴琼之,孙林. 基于局部最优匹配的斜视SAR子孔径成像算法. 电子与信息学报. 2017(12): 2851-2859 . 本站查看
    6. 曹淑敏,吴文瑾,李新武,刘国林. 斜视SAR重采样误差分析及改进. 遥感信息. 2017(06): 1-7 . 百度学术
    7. 董祺,杨泽民,李震宇,孙光才,邢孟道. 基于方位空变斜距模型的大斜视机动平台波数域SAR成像算法. 电子与信息学报. 2016(12): 3166-3173 . 本站查看
    8. 董祺,邢孟道,李震宇,孙光才. 一种基于坐标轴旋转的俯冲段大斜视SAR波数域成像算法. 电子与信息学报. 2016(12): 3137-3143 . 本站查看

    其他类型引用(19)

  • 加载中
计量
  • 文章访问数:  3854
  • HTML全文浏览量:  90
  • PDF下载量:  756
  • 被引次数: 27
出版历程
  • 收稿日期:  2009-01-08
  • 修回日期:  2009-11-03
  • 刊出日期:  2010-02-19

目录

    /

    返回文章
    返回