高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的结合非下采样Contourlet与自适应全变差的图像去噪方法

武晓玥 郭宝龙 李雷达

武晓玥, 郭宝龙, 李雷达. 一种新的结合非下采样Contourlet与自适应全变差的图像去噪方法[J]. 电子与信息学报, 2010, 32(2): 360-365. doi: 10.3724/SP.J.1146.2008.01830
引用本文: 武晓玥, 郭宝龙, 李雷达. 一种新的结合非下采样Contourlet与自适应全变差的图像去噪方法[J]. 电子与信息学报, 2010, 32(2): 360-365. doi: 10.3724/SP.J.1146.2008.01830
Wu Xiao-yue, Guo Bao-long, Li Lei-da. A New Image Denoising Method Combining the Nonsubsampled Contourlet Transform and Adaptive Total Variation[J]. Journal of Electronics & Information Technology, 2010, 32(2): 360-365. doi: 10.3724/SP.J.1146.2008.01830
Citation: Wu Xiao-yue, Guo Bao-long, Li Lei-da. A New Image Denoising Method Combining the Nonsubsampled Contourlet Transform and Adaptive Total Variation[J]. Journal of Electronics & Information Technology, 2010, 32(2): 360-365. doi: 10.3724/SP.J.1146.2008.01830

一种新的结合非下采样Contourlet与自适应全变差的图像去噪方法

doi: 10.3724/SP.J.1146.2008.01830

A New Image Denoising Method Combining the Nonsubsampled Contourlet Transform and Adaptive Total Variation

  • 摘要: 该文提出了一种新的结合非下采样Contourlet变换(NSCT)和自适应全变差模型的图像去噪方法。首先通过NSCT对含噪图像进行分解,根据高斯比例混合(GSM)模型建立图像模型;然后利用贝叶斯估计进行图像去噪,重构后得到初次去噪图像;最后,结合自适应全变差模型对初次去噪图像进行重构滤波,得到最终的去噪图像。实验结果表明,该方法可以有效地消除图像中的Gibbs伪影及噪声,在去噪图像峰值信噪比(PSNR)和边缘保持性能上都优于已有的算法。
  • 刘英霞, 王欣. 双Haar小波变换系数的 MAP 估计及在图像去噪中的应用[J].电子与信息学报.2007, 29(5):1038-1040浏览Liu Ying-xia and Wang Xin. MAP estimate of double haar wavelet coefficients and its application to image denoising[J].Journal of Electronics Information Technology.2007, 29(5):1038-1040[2]戴芳, 薛建儒, 郑南宁. 嵌入固有模态函数的各向异性扩散方程用于图像降噪[J].电子与信息学报.2008, 30(3):509-513浏览Dai Fang, Xue Jian-ru, and Zheng Nan-ning. Embedding intrinsic mode function into anisotropic diffusion equation for image denoising[J].Journal of Electronics Information Technology.2008, 30(3):509-513[3]Cunha A L, Zhou J, and Do M N. The NonSubsampled Contourlet Transform: Theory, design, and applications [J].IEEE Transactions on Image Processing.2006, 15(10):3089-3101[4]Do M N and Vetterli M. The contourlet transform: An efficient directional multiresolution image representation [J].IEEE Transactions on Image Processing.2005, 14(12):2091-2106[5]张瑾, 方勇. 基于分块 Contourlet 变换的图像独立分量分析方法[J].电子与信息学报.2007, 29(8):1813-1816浏览Zhang Jin and Fang Yong. An independent component analysis algorithm based on block-wise contourlet transform[J].Journal of Electronics Information Technology.2007, 29(8):1813-1816[6]Ma J and Plonka G. Combined curvelet shrinkage and nonlinear anisotropic diffusion[J].IEEE Transactions on Image Processing.2007, 16(9):2198-2206[7]Cands E J and Guo F. New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction[J].Signal Processing.2002, 82(11):1519-1543[8]Portilla J, Strela V, Wainwright M J, and Simoncelli E P. Image denoising using scale mixtures of Gaussians in the wavelet domain[J].IEEE Transactions on Image Processing.2003, 12(11):1338-1351[9]Gilboa G, Sochen N, and Zeevi Y. Variational denoising of partly textured images by spatially varying constraints[J].IEEE Transactions on Image Processing.2006, 15(8):2281-2289[10]zurica A and Philips W. Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising[J].IEEE Transactions on Image Processing.2006,15(3):654-665[11]Luisier F, Blu T, and Unser M. A new SURE approach to image denoising: Inter-scale orthonormal wavelet thresholding[J].IEEE Transactions on Image Processing.2007, 16(3):593-606
  • 加载中
计量
  • 文章访问数:  4421
  • HTML全文浏览量:  99
  • PDF下载量:  1258
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-30
  • 修回日期:  2009-10-22
  • 刊出日期:  2010-02-19

目录

    /

    返回文章
    返回