基于多组博弈的新型网络流量控制模型
doi: 10.3724/SP.J.1146.2008.01827
Novel Network Flow Control Model on Multi-Team Game Theory
-
摘要: 该文研究了具有强分布式特征和分层结构的通信网络流量控制问题,借鉴多组博弈模型来研究新型的网络流量控制模型,构造了基于网络流量速率和时延为参数的流量效用函数,使之能适度地满足不同业务的用户流量QoS需求,利用多组博弈优化模型建立了基于Min-Max的公平的网络流量控制博弈模型。理论上证明了提出的网络流量控制模型的非劣纳什策略存在性。数值仿真验证了模型的正确性,仿真结果验证了用户流量在非劣纳什均衡点的效用值是帕累托占优的。Abstract: This paper investigates the communication network flow control with strong distributed feature and hierarchical structure, a novel network flow control model is studied by using the multi-team game model, the utility function is built up on flow rate and delay to make user flow satisfy different flow proportional QoS requirement, thus the Min-Max fair flow control game model is constituted by multi-team game optimized model. The existence of the non-inferior Nash equilibrium of the proposed network flow control model is proved theoretically. The correctness of the proposed model is validated by numerical evaluation, simulation result validates the user flow utility value is Pareto optimal at the non-inferior Nash equilibrium point.
-
Yang Yue-quan, Cao Zhi-qiang, Tan Min, and Yi Jian-qiang. Fairness and dynamic flow control in both unicast and multicast architecture networks[J].IEEE Transactions on Systems, Man, and CyberneticsPart C: Applications and Reviews.2007, 37(2):206-212[2]Cho Jeong-Woo and Chong Song. Utility max-min flow control using slope-restricted utility functions[J].IEEE Transactions on Communications.2007, 55(5):963-972[3]Abdulla M S and Bhatnagar S. Network flow-control using asynchronous stochastic approximation[C]. Proceedings of the 46th IEEE Conference on Decision and Control, CDC, New Orleans, USA, December, 2008: 5857-5862.[4]Paganini F. A global stability result in network flow control[J].Systems and Control Letters.2002, 46(3):165-172[5]Jin Young-mi and Kesidis G. Charge sensitive and incentive compatible end-to-end window-based control for selfishusers[J].IEEE Journal on Selected Area in Communications.2006, 24(5):952-961[6]Altman E, Basar T, and Srikant R. Nash equilibria for combined flow control and routing in networks: Asymptotic behavior for a large number of users[J].IEEE Transactions on Automatic Control.2002, 47(6):917-930[7]Sahin I and Simaan M A. A flow and routing control policy for communication networks with multiple competitive Users[J].Journal of the Franklin Institute.2006, 343(2):168-180[8]S S Askera. On dynamical multi-team cournot game in exploitation of a renewable resource [J].Chaos, Solitons Fractals.2007, 32(1):264-268[9]Rosen J B. Existence and uniqueness of equilibrium points for concave N-person games[J].Econometrica.1965, 33(3):520-534
计量
- 文章访问数: 3552
- HTML全文浏览量: 136
- PDF下载量: 1016
- 被引次数: 0