高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多组博弈的新型网络流量控制模型

冯慧斌 张顺颐 刘超 刘觉夫

冯慧斌, 张顺颐, 刘超, 刘觉夫. 基于多组博弈的新型网络流量控制模型[J]. 电子与信息学报, 2010, 32(2): 267-271. doi: 10.3724/SP.J.1146.2008.01827
引用本文: 冯慧斌, 张顺颐, 刘超, 刘觉夫. 基于多组博弈的新型网络流量控制模型[J]. 电子与信息学报, 2010, 32(2): 267-271. doi: 10.3724/SP.J.1146.2008.01827
Feng Hui-bin, Zhang Shun-yi, Liu Chao, Liu Jue-fu. Novel Network Flow Control Model on Multi-Team Game Theory[J]. Journal of Electronics & Information Technology, 2010, 32(2): 267-271. doi: 10.3724/SP.J.1146.2008.01827
Citation: Feng Hui-bin, Zhang Shun-yi, Liu Chao, Liu Jue-fu. Novel Network Flow Control Model on Multi-Team Game Theory[J]. Journal of Electronics & Information Technology, 2010, 32(2): 267-271. doi: 10.3724/SP.J.1146.2008.01827

基于多组博弈的新型网络流量控制模型

doi: 10.3724/SP.J.1146.2008.01827

Novel Network Flow Control Model on Multi-Team Game Theory

  • 摘要: 该文研究了具有强分布式特征和分层结构的通信网络流量控制问题,借鉴多组博弈模型来研究新型的网络流量控制模型,构造了基于网络流量速率和时延为参数的流量效用函数,使之能适度地满足不同业务的用户流量QoS需求,利用多组博弈优化模型建立了基于Min-Max的公平的网络流量控制博弈模型。理论上证明了提出的网络流量控制模型的非劣纳什策略存在性。数值仿真验证了模型的正确性,仿真结果验证了用户流量在非劣纳什均衡点的效用值是帕累托占优的。
  • Yang Yue-quan, Cao Zhi-qiang, Tan Min, and Yi Jian-qiang. Fairness and dynamic flow control in both unicast and multicast architecture networks[J].IEEE Transactions on Systems, Man, and CyberneticsPart C: Applications and Reviews.2007, 37(2):206-212[2]Cho Jeong-Woo and Chong Song. Utility max-min flow control using slope-restricted utility functions[J].IEEE Transactions on Communications.2007, 55(5):963-972[3]Abdulla M S and Bhatnagar S. Network flow-control using asynchronous stochastic approximation[C]. Proceedings of the 46th IEEE Conference on Decision and Control, CDC, New Orleans, USA, December, 2008: 5857-5862.[4]Paganini F. A global stability result in network flow control[J].Systems and Control Letters.2002, 46(3):165-172[5]Jin Young-mi and Kesidis G. Charge sensitive and incentive compatible end-to-end window-based control for selfishusers[J].IEEE Journal on Selected Area in Communications.2006, 24(5):952-961[6]Altman E, Basar T, and Srikant R. Nash equilibria for combined flow control and routing in networks: Asymptotic behavior for a large number of users[J].IEEE Transactions on Automatic Control.2002, 47(6):917-930[7]Sahin I and Simaan M A. A flow and routing control policy for communication networks with multiple competitive Users[J].Journal of the Franklin Institute.2006, 343(2):168-180[8]S S Askera. On dynamical multi-team cournot game in exploitation of a renewable resource [J].Chaos, Solitons Fractals.2007, 32(1):264-268[9]Rosen J B. Existence and uniqueness of equilibrium points for concave N-person games[J].Econometrica.1965, 33(3):520-534
  • 加载中
计量
  • 文章访问数:  3552
  • HTML全文浏览量:  136
  • PDF下载量:  1016
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-30
  • 修回日期:  2009-06-25
  • 刊出日期:  2010-02-19

目录

    /

    返回文章
    返回