[1] Bachoc C. Applications of coding theory to the constructionof modular Lattices[J].Combinatorial Theory, Series A.1997,78(1):92-119 [2] Bonnecaze A and Udaya P. Cyclic codes and self-dual codesover 2 2 F +uF[J].IEEE Transactions on Information Theory.1999, 45(4):1250-1255 [3] Dougherty S T, Gaborit P, Harada M, and Sol.P. TypeⅡcodes over 2 2 F +uF [J].IEEE Transactions on InformationTheory.1999, 45(1):32-45 [4] Qian Jian-fa, Zhang Li-na, and Zhu Shi-xin. (1 + u)-constacyclic and cyclic codes over 2 2 F +uF [J]. AppliedMathematics Letters, 2006, 19(8): 820-823. [5] 钱建发, 朱士信. 2 2 2k F+uF+..+uF环上的循环码[J]. 通信学报, 2006, 27(9): 86-88.Qian Jian-fa and Zhu Shi-xin. Cyclic codes over ring2 2 2k F+uF+..+uF [J]. Journal on Communications, 2006,27(9): 86-88. [6] Udaya P and Siddiqi M U. Optimal large linear complexityfrequency hopping patterns derived from polynomial residuerings [J].IEEE Transactions on Information Theory.1998,44(4):1492-1503 [7] Qian J F and Zhu S X. Cyclic codes overk 1p p p F uF u F + + + .. [J].. IEICE Transactions onFundamentals.2005, E88-A(3):795-797 [8] Ozen M and Siap I. Linear codes over [ ]/ sq F u u withrespect to the Rosenbloom-tasfasm an metric[J].Designs,Codes and Cryptology.2006, 38(1):17-29 [9] 庨巑怣, 棝暯, .攇. .k 1q q q F uF u F . + + + .. 忋堦.廳崻弞..[J]. .巕梌怣懅妛., 2008, 30(6): 1394-1396.Zhu Shi-xin, Li Ping, and Wu Bo. A class of repeated-rootconstacyclic codes over the ring k 1q q q F uF u F . + + + .. [J].Journal of Electronics Information Technology, 2008, 30(6):1394-1396. [10] Zhu Shi-xin and Kai Xiao-shan. The Hamming distances ofnegacyclic codes of length 2s over (2 , ) a GR m [J].Journal ofSystem Science and Complexity.2008, 21(1):60-66 [11] .椦, 庨巑怣, .峕峖. .2 2 F +uF忋..2s 揑(1 + u)- 忢弞..揑嫍.暘晍[J]. 拞崙壢媄戝妛妛., 2008, 38(10):1810-1814.Deng Lin, Zhu Shi-xin, and Han Jiang-hong. The distributionof distances of (1 + u)- constacyclic codes of length 2s over2 2 F +uF[J]. Journal of University of Science and Technologyof China, 2008, 38(10): 1810-1814. [12] Dinh H Q. Complete distances of all negacyclic codes ofLength 2s over 2Z a [J].IEEE Transactions on InformationTheory.2007, 53(1):147-161 [13] McDonald B R. Finite Rings with Identity[M]. New York丗Marcel Dekker, 1974, Chapter II.
|