高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环F2+uF2++uk-1F2上长为2S的(1+u)-常循环码的距离分布

施敏加 杨善林 朱士信

施敏加, 杨善林, 朱士信. 环F2+uF2++uk-1F2上长为2S的(1+u)-常循环码的距离分布[J]. 电子与信息学报, 2010, 32(1): 112-116. doi: 10.3724/SP.J.1146.2008.01810
引用本文: 施敏加, 杨善林, 朱士信. 环F2+uF2++uk-1F2上长为2S的(1+u)-常循环码的距离分布[J]. 电子与信息学报, 2010, 32(1): 112-116. doi: 10.3724/SP.J.1146.2008.01810
Shi Min-jia, Yang Shan-lin, Zhu Shi-xin. The Distributions of Distances of (1+u)-Constacyclic Codes of Length 2S over F2+uF2++uk-1F2[J]. Journal of Electronics & Information Technology, 2010, 32(1): 112-116. doi: 10.3724/SP.J.1146.2008.01810
Citation: Shi Min-jia, Yang Shan-lin, Zhu Shi-xin. The Distributions of Distances of (1+u)-Constacyclic Codes of Length 2S over F2+uF2++uk-1F2[J]. Journal of Electronics & Information Technology, 2010, 32(1): 112-116. doi: 10.3724/SP.J.1146.2008.01810

环F2+uF2++uk-1F2上长为2S的(1+u)-常循环码的距离分布

doi: 10.3724/SP.J.1146.2008.01810

The Distributions of Distances of (1+u)-Constacyclic Codes of Length 2S over F2+uF2++uk-1F2

  • 摘要: 研究码字的距离分布是编码理论的一个重要研究方向。该文定义了环R=F2+uF2++uk-1F2上的Homogeneous重量,研究了环R上长为2S的(1+u)-常循环码的Hamming距离和Homogeneous距离。使用了有限环和域的理论,给出了环R上长为2S的(1+u)-常循环码和循环自对偶码的结构和码字个数。并利用该常循环码的结构,确定了环R上长为2S的(1+u)-常循环码的Hamming距离和Homogeneous距离分布。
  • [1] Bachoc C. Applications of coding theory to the constructionof modular Lattices[J].Combinatorial Theory, Series A.1997,78(1):92-119 [2] Bonnecaze A and Udaya P. Cyclic codes and self-dual codesover 2 2 F +uF[J].IEEE Transactions on Information Theory.1999, 45(4):1250-1255 [3] Dougherty S T, Gaborit P, Harada M, and Sol.P. TypeⅡcodes over 2 2 F +uF [J].IEEE Transactions on InformationTheory.1999, 45(1):32-45 [4] Qian Jian-fa, Zhang Li-na, and Zhu Shi-xin. (1 + u)-constacyclic and cyclic codes over 2 2 F +uF [J]. AppliedMathematics Letters, 2006, 19(8): 820-823. [5] 钱建发, 朱士信. 2 2 2k F+uF+..+uF环上的循环码[J]. 通信学报, 2006, 27(9): 86-88.Qian Jian-fa and Zhu Shi-xin. Cyclic codes over ring2 2 2k F+uF+..+uF [J]. Journal on Communications, 2006,27(9): 86-88. [6] Udaya P and Siddiqi M U. Optimal large linear complexityfrequency hopping patterns derived from polynomial residuerings [J].IEEE Transactions on Information Theory.1998,44(4):1492-1503 [7] Qian J F and Zhu S X. Cyclic codes overk 1p p p F uF u F + + + .. [J].. IEICE Transactions onFundamentals.2005, E88-A(3):795-797 [8] Ozen M and Siap I. Linear codes over [ ]/ sq F u u withrespect to the Rosenbloom-tasfasm an metric[J].Designs,Codes and Cryptology.2006, 38(1):17-29 [9] 庨巑怣, 棝暯, .攇. .k 1q q q F uF u F . + + + .. 忋堦.廳崻弞..[J]. .巕梌怣懅妛., 2008, 30(6): 1394-1396.Zhu Shi-xin, Li Ping, and Wu Bo. A class of repeated-rootconstacyclic codes over the ring k 1q q q F uF u F . + + + .. [J].Journal of Electronics Information Technology, 2008, 30(6):1394-1396. [10] Zhu Shi-xin and Kai Xiao-shan. The Hamming distances ofnegacyclic codes of length 2s over (2 , ) a GR m [J].Journal ofSystem Science and Complexity.2008, 21(1):60-66 [11] .椦, 庨巑怣, .峕峖. .2 2 F +uF忋..2s 揑(1 + u)- 忢弞..揑嫍.暘晍[J]. 拞崙壢媄戝妛妛., 2008, 38(10):1810-1814.Deng Lin, Zhu Shi-xin, and Han Jiang-hong. The distributionof distances of (1 + u)- constacyclic codes of length 2s over2 2 F +uF[J]. Journal of University of Science and Technologyof China, 2008, 38(10): 1810-1814. [12] Dinh H Q. Complete distances of all negacyclic codes ofLength 2s over 2Z a [J].IEEE Transactions on InformationTheory.2007, 53(1):147-161 [13] McDonald B R. Finite Rings with Identity[M]. New York丗Marcel Dekker, 1974, Chapter II.
  • 加载中
计量
  • 文章访问数:  3301
  • HTML全文浏览量:  85
  • PDF下载量:  730
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-29
  • 修回日期:  2009-06-19
  • 刊出日期:  2010-01-19

目录

    /

    返回文章
    返回