高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MIMO系统的改进序贯蒙特卡罗迭代检测算法

丁睿 高西奇 尤肖虎

丁睿, 高西奇, 尤肖虎. MIMO系统的改进序贯蒙特卡罗迭代检测算法[J]. 电子与信息学报, 2010, 32(2): 307-312. doi: 10.3724/SP.J.1146.2008.01801
引用本文: 丁睿, 高西奇, 尤肖虎. MIMO系统的改进序贯蒙特卡罗迭代检测算法[J]. 电子与信息学报, 2010, 32(2): 307-312. doi: 10.3724/SP.J.1146.2008.01801
Ding Rui, Gao Xi-qi, You Xiao-hu. A Revised Sequential Monte Carlo Iterative Detection for MIMO System[J]. Journal of Electronics & Information Technology, 2010, 32(2): 307-312. doi: 10.3724/SP.J.1146.2008.01801
Citation: Ding Rui, Gao Xi-qi, You Xiao-hu. A Revised Sequential Monte Carlo Iterative Detection for MIMO System[J]. Journal of Electronics & Information Technology, 2010, 32(2): 307-312. doi: 10.3724/SP.J.1146.2008.01801

MIMO系统的改进序贯蒙特卡罗迭代检测算法

doi: 10.3724/SP.J.1146.2008.01801

A Revised Sequential Monte Carlo Iterative Detection for MIMO System

  • 摘要: 为了得到最优的MIMO迭代接收机,需要精确计算软输入软输出检测器输出的外信息,但精确计算的复杂度随调制阶数和天线数指数增长,不适合多天线高阶调制的情况。该文首先将外信息的估计归结为一个目标集合的选取,并提出通过序贯蒙特卡罗抽样方法获取目标集合。但是研究表明传统抽样方法不能有效获得合适的集合;因此一种改进的序贯蒙特卡罗抽样方法被提出,用于解决有限元离散概率空间的样本近似。最终,基于改进序贯蒙特卡罗抽样的外信息近似计算应用于迭代检测算法中。分析表明,该文提出的迭代检测算法的复杂度和抽取的样本数量呈线性比例;而仿真结果证明,较少的样本就可以取得逼近最优的误码率性能。
  • Foschini G J. Layered Space-time architecture for wireless communication in a fading environment when using multi-element antennas [J].Bell Labs Technical Journal.1996, 1(2):41-59[2]Wang X and Poor H V. Iterative (Turbo) soft interference cancellation and decoding for coded CDMA [J].IEEE Transactions on Communications.1999, 47(7):1046-1061[3]Damen M O, Chkeif A, and Belfiore J C. Lattice code decoder for space-time codes [J].IEEE Communications Letter.2000, 4(5):161-163[4]Hochwald B M andBrink S T. Achieving near-capacity on a multiple-antenna channel [J].IEEE Transactions on Communications.2003, 51(3):389-399[5]Doucet A, Godsill S J, and Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering [J].Statistics and Computing.2001, 10(3):197-208[6]Dong B, Wang X, and Doucet A. A new class of MIMO demodulation algorithms [J].IEEE Transactions on Signal Processing.2003, 51(11):2752-2763[7]Su Y T, Zhang X D, and Zhu X L. A low-complexity sequential Monte Carlo algorithm for blind detection in MIMO systems [J].IEEE Transactions on Signal Processing.2006, 54(7):2485-2496[8]Aggarwal P and Wang X. Multilevel sequential Monte Carlo algorithms for MIMO demodulation [J].IEEE Transactions on Wireless Communications.2007, 6(2):750-758[9]Aggarwal P, Prasad N, and Wang X. An enhanced[10]deterministic sequential Monte Carlo method for near-[11]optimal MIMO demodulation with QAM constellations [J]. IEEE Transactions on Signal Processing, 2007, 55(6): 2395-2406.[12]Yang Y, Hu J, and Zhang H. Bit-level deterministic sequential Monte Carlo method for MIMO wireless systems [C]. ICC 2008, Beijing, China, May 2008: 3622-3626.Ding R, Gao X Q, and You X H. A low-complexity implementation of sampling-based MIMO detection [C]. ICNNSP 2008, Wuxi, China, June 2008: 705-710.[13]Yee D, Reilly J P, and Kirubarajan T. A blind sequential Monte Carlo detector for OFDM systems in the presence of phase noise, multipath fading, and channel order uncertainty[J].IEEE Transactions on Signal Processing.2007, 55(9):4581-4598[14]Farhang-Boroujeny B, Zhu H, and Shi Z. Markov chain Monte Carlo algorithms for CDMA and MIMO communication systems [J].IEEE Transactions on Signal Processing.2006, 54(5):1896-1909[15]Mao X, Amini P, and Farhang-Boroujeny B. Markov chain Monte Carlo MIMO detection methods for high signal-to-noise ratio regimes [C]. GLOBECOM 2007, Washington, DC, USA, Nov. 2007: 3979-3983.
  • 加载中
计量
  • 文章访问数:  3642
  • HTML全文浏览量:  82
  • PDF下载量:  893
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-26
  • 修回日期:  2009-09-28
  • 刊出日期:  2010-02-19

目录

    /

    返回文章
    返回