MIMO系统的改进序贯蒙特卡罗迭代检测算法
doi: 10.3724/SP.J.1146.2008.01801
A Revised Sequential Monte Carlo Iterative Detection for MIMO System
-
摘要: 为了得到最优的MIMO迭代接收机,需要精确计算软输入软输出检测器输出的外信息,但精确计算的复杂度随调制阶数和天线数指数增长,不适合多天线高阶调制的情况。该文首先将外信息的估计归结为一个目标集合的选取,并提出通过序贯蒙特卡罗抽样方法获取目标集合。但是研究表明传统抽样方法不能有效获得合适的集合;因此一种改进的序贯蒙特卡罗抽样方法被提出,用于解决有限元离散概率空间的样本近似。最终,基于改进序贯蒙特卡罗抽样的外信息近似计算应用于迭代检测算法中。分析表明,该文提出的迭代检测算法的复杂度和抽取的样本数量呈线性比例;而仿真结果证明,较少的样本就可以取得逼近最优的误码率性能。Abstract: An optimal iterative receiver for MIMO system need exact calculation of extrinsic information in Soft-Input-Soft-Output (SISO) detector. This optimal receiver does not fit the system with large numbers of antennas and high modulation order, because its complexity increases exponentially with modulation order and antenna number. So in this paper, the estimation of extrinsic information is proved to be equal to a choice issue of a target collection, which will be obtained by Sequential Monte Carlo (SMC) sampling. But the research also indicates that the traditional sampling method can not draw a suited target collection, so a Revised SMC (R-SMC) method is proposed to approximate a finite element discrete probability space by drawn samples. Finally, an approximate computation of extrinsic information based on R-SMC sampling is applied in this new detection algorithm. By analyses, the proposed algorithms complexity is linearly proportional to the number of drawn samples. And simulation results prove that the near-optimal Bit-Error-Ratio (BER) performance can be obtained by a small number of samples.
-
Foschini G J. Layered Space-time architecture for wireless communication in a fading environment when using multi-element antennas [J].Bell Labs Technical Journal.1996, 1(2):41-59[2]Wang X and Poor H V. Iterative (Turbo) soft interference cancellation and decoding for coded CDMA [J].IEEE Transactions on Communications.1999, 47(7):1046-1061[3]Damen M O, Chkeif A, and Belfiore J C. Lattice code decoder for space-time codes [J].IEEE Communications Letter.2000, 4(5):161-163[4]Hochwald B M andBrink S T. Achieving near-capacity on a multiple-antenna channel [J].IEEE Transactions on Communications.2003, 51(3):389-399[5]Doucet A, Godsill S J, and Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering [J].Statistics and Computing.2001, 10(3):197-208[6]Dong B, Wang X, and Doucet A. A new class of MIMO demodulation algorithms [J].IEEE Transactions on Signal Processing.2003, 51(11):2752-2763[7]Su Y T, Zhang X D, and Zhu X L. A low-complexity sequential Monte Carlo algorithm for blind detection in MIMO systems [J].IEEE Transactions on Signal Processing.2006, 54(7):2485-2496[8]Aggarwal P and Wang X. Multilevel sequential Monte Carlo algorithms for MIMO demodulation [J].IEEE Transactions on Wireless Communications.2007, 6(2):750-758[9]Aggarwal P, Prasad N, and Wang X. An enhanced[10]deterministic sequential Monte Carlo method for near-[11]optimal MIMO demodulation with QAM constellations [J]. IEEE Transactions on Signal Processing, 2007, 55(6): 2395-2406.[12]Yang Y, Hu J, and Zhang H. Bit-level deterministic sequential Monte Carlo method for MIMO wireless systems [C]. ICC 2008, Beijing, China, May 2008: 3622-3626.Ding R, Gao X Q, and You X H. A low-complexity implementation of sampling-based MIMO detection [C]. ICNNSP 2008, Wuxi, China, June 2008: 705-710.[13]Yee D, Reilly J P, and Kirubarajan T. A blind sequential Monte Carlo detector for OFDM systems in the presence of phase noise, multipath fading, and channel order uncertainty[J].IEEE Transactions on Signal Processing.2007, 55(9):4581-4598[14]Farhang-Boroujeny B, Zhu H, and Shi Z. Markov chain Monte Carlo algorithms for CDMA and MIMO communication systems [J].IEEE Transactions on Signal Processing.2006, 54(5):1896-1909[15]Mao X, Amini P, and Farhang-Boroujeny B. Markov chain Monte Carlo MIMO detection methods for high signal-to-noise ratio regimes [C]. GLOBECOM 2007, Washington, DC, USA, Nov. 2007: 3979-3983. 期刊类型引用(17)
1. 田鹤,陈汪翔,任红梅,李道京. 基于艇载稀疏阵列雷达的空中运动目标成像探测. 现代雷达. 2022(05): 27-32 . 百度学术
2. 李道京,朱宇,胡烜,于海锋,周凯,张润宁,刘磊. 衍射光学系统的激光应用和稀疏成像分析. 雷达学报. 2020(01): 195-203 . 百度学术
3. 解金卫,李真芳,王帆,王志斌. 基于幅相不一致准则的建筑物SAR层析成像. 雷达学报. 2020(01): 154-165 . 百度学术
4. 田鹤,于海锋,朱宇,刘磊,张润宁,袁莉,李道京,周凯. 基于频域稀疏压缩感知的星载SAR稀疏重航过3维成像. 电子与信息学报. 2020(08): 2021-2028 . 本站查看
5. 徐西桂,庞蕾,张学东,刘慧,陈洋,韦诗莹. 多基线层析SAR技术的研究现状分析. 测绘通报. 2018(01): 14-21 . 百度学术
6. 石曼曼,李雷,徐静妹. 基于模糊阈值的回溯分段弱正交匹配追踪算法. 电视技术. 2018(02): 5-9 . 百度学术
7. 杜秀丽,张薇,顾斌斌,陈波,邱少明. 基于灰度共生矩阵的图像自适应分块压缩感知方法. 计算机科学. 2018(08): 277-282 . 百度学术
8. 田鹤,李道京,祁春超. 频域稀疏毫米波人体安检成像处理和快速成像稀疏阵列设计. 雷达学报. 2018(03): 376-386 . 百度学术
9. 石曼曼,李雷. 一种改进的OMP算法及其在图像重构上的应用. 计算机技术与发展. 2018(02): 94-97 . 百度学术
10. 张斌,韦立登,胡庆荣,李爽. 基于四阶累积量的机载多基线SAR谱估计解叠掩方法. 雷达学报. 2018(06): 740-749 . 百度学术
11. 田鹤,李道京. 稀疏重航过阵列SAR运动误差补偿和三维成像方法. 雷达学报. 2018(06): 717-729 . 百度学术
12. 王爱春,向茂生,汪丙南. 一种联合Khatri-Rao子空间与块稀疏压缩感知的差分SAR层析成像方法. 电子与信息学报. 2017(01): 95-102 . 本站查看
13. 田鹤,李道京,潘洁,周建卫. 基于修正均匀冗余阵列正反编码的稀疏阵列SAR下视三维成像处理. 电子与信息学报. 2017(09): 2203-2211 . 本站查看
14. 王爱春,向茂生. 基于块压缩感知的SAR层析成像方法. 雷达学报. 2016(01): 57-64 . 百度学术
15. 李烈辰,李道京,黄平平. 基于变换域稀疏压缩感知的艇载稀疏阵列天线雷达实孔径成像. 雷达学报. 2016(01): 109-117 . 百度学术
16. 曹玉强,柏森,曹明武. 图像自适应分块的压缩感知采样算法. 中国图象图形学报. 2016(04): 416-424 . 百度学术
17. 张世辉,韩德伟,何欢. 利用视觉目标遮挡和轮廓信息确定下一最佳观测方位. 电子与信息学报. 2015(12): 2921-2928 . 本站查看
其他类型引用(19)
-
计量
- 文章访问数: 3670
- HTML全文浏览量: 91
- PDF下载量: 893
- 被引次数: 36