高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无线传感网中多传感器特征融合算法研究

曹红兵 魏建明 刘海涛

曹红兵, 魏建明, 刘海涛. 无线传感网中多传感器特征融合算法研究[J]. 电子与信息学报, 2010, 32(1): 166-171. doi: 10.3724/SP.J.1146.2008.01800
引用本文: 曹红兵, 魏建明, 刘海涛. 无线传感网中多传感器特征融合算法研究[J]. 电子与信息学报, 2010, 32(1): 166-171. doi: 10.3724/SP.J.1146.2008.01800
Cao Hong-bing, Wei Jian-ming, Liu Hai-tao. Research on Multi-Sensor Feature Fusion Algorithms in Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2010, 32(1): 166-171. doi: 10.3724/SP.J.1146.2008.01800
Citation: Cao Hong-bing, Wei Jian-ming, Liu Hai-tao. Research on Multi-Sensor Feature Fusion Algorithms in Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2010, 32(1): 166-171. doi: 10.3724/SP.J.1146.2008.01800

无线传感网中多传感器特征融合算法研究

doi: 10.3724/SP.J.1146.2008.01800

Research on Multi-Sensor Feature Fusion Algorithms in Wireless Sensor Networks

  • 摘要: 面向无线传感器网络在地面目标识别方面的应用需求,该文提出了一种基于改进局域判别基(Local Discriminant Bases, LDB)和二进制粒子群优化(Binary Particle Swarm Optimization, BPSO)方法的多传感器特征融合算法。利用新的基于概率密度估计的相对微分熵可分性测度来改进LDB,以提取目标信号的特征频段,然后分别利用一种改进的和一种全新的BPSO来实现特征融合。基于实地采集到的地面目标的声音和震动信号,仿真实验表明,该方法减少了所需分类器的数目,降低了特征维数,并在一定程度上提高了目标的正确识别率,具有实际的应用价值。
  • [1] Yick J, Mukherjee B, and Ghosal D. Wireless sensornetwork survey [J].Computer Networks.2008, 52(12):2292-2330 [2] Duarte M and Hu Y H. Vehicle classification in distributedsensor networks [J].Journal of Parallel and DistributedComputing.2004, 64(7):826-838 [3] 聂伟荣, 朱继南, 郭亚军等. 地震动信号的分析与目标识别[J].电子科技大学学报, 2003, 32(1): 26-30.Nie Wei-rong, Zhu Ji-nan, and Guo Ya-jun, et al.. Seismicsignals analysis and identification [J]. Journal of UEST ofChina, 2003, 32(1): 26-30. [4] Mazarakis G P and Avaritsiotis J N. Vehicle classificationin sensor networks using time-domain signal processing andneural networks [J].Microprocessors and Microsystems.2007, 31(6):381-392 [5] Wu H W and Mendel J M. Classification of battlefieldground vehicles using acoustic features and fuzzy logic rulebasedclassifiers [J].IEEE Transactions on Fuzzy Systems.2007, 15(1):56-72 [6] Malhotra B, Nikolaidis I, and Harms J. Distributedclassification of acoustic taargets in wireless audio-sensornetworks [J].Computer Networks.2008, 52(13):2582-2593 [7] Kuncheva L I, Bezdek J C, and Duin R P W. Decisiontemplates for multiple classifier fusion: An experimentalcomparison [J].Pattern Recognition.2001, 34(2):299-314 [8] Pan Q, Wei J M, and Cao H B, et al.. Improved DSacoustic-seismic modality fusion for ground-moving targetclassification in wireless sensor networks. PatternRecognition Letters, 2007, 28(16): 2419-2426. [9] Mallat S. A Wavelet Tour of Signal Processing [M]. SanDiego: Academic Press, 1998: 322-338. [10] Saito N and Coifman R R. Local discriminant bases andtheir applications [J]. Journal of Mathematical ImagingVision, 1995, 5(4): 337-358. [11] Umapathy K, Krishnan S, and Rao R K. Audio signalfeature extraction and classification using local discriminantbases [J].IEEE Transactions on Audio, Speech, andLanguage Processing.2007, 15(4):1236-1246 [12] 柳革命, 孙超, 刘兵等. 局域判别基空间能量的水声目标特征提取 [J]. 声学技术, 2007, 26(6): 1089-1093.Liu Ge-ming, Sun Chao, and Liu Bing, et al.. Featureextraction based on subspace energy of local discriminantbasis [J]. Technical Acoustics, 2007, 26(6): 1089-1093. [13] Kennedy J and Eberhart R C. Particle swarm optimization[C]. IEEE 1st International Conference on Neural Networks,IV. Piscataway, NJ: IEEE Service Center, 1995: 1942-1948. [14] Eberhart R C and Kennedy J. A discrete binary version ofthe particle swarm algorithm [C]. IEEE Conference onSystem, Man, and Cybernetics, Orlando, FL, 1997, 5: 4104-4109. [15] Chuang L, Chang H, and Tu C, et al.. Improved binaryPSO for feature selection using gene expression data [J].Computational Biology and Chemistry.2008, 32(1):29-38 [16] Huang C and Dun J. A distributed PSO-SVM hybridsystem with feature selection and parameter optimization[J].Applied Soft Computing.2008, 8(4):1381-1391 [17] Seekings P and Potter J. Classification of marine acousticsignals using wavelets and neural networks [C]. Proceedingsof Underwater Defense Technology Conference, Singapore,2003: 1-6. [18] Clerc M and Kennedy J. The particle swarmexplosion,stability, and convergence in a multidimensional complexspace [J].IEEE Transactions on Evolutionary Computation.2002, 6(1):58-73
  • 加载中
计量
  • 文章访问数:  3252
  • HTML全文浏览量:  116
  • PDF下载量:  1101
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-26
  • 修回日期:  2009-06-11
  • 刊出日期:  2010-01-19

目录

    /

    返回文章
    返回