高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于特征点的多运动目标跟踪

高韬 刘正光 张军 岳士弘

高韬, 刘正光, 张军, 岳士弘. 基于特征点的多运动目标跟踪[J]. 电子与信息学报, 2010, 32(5): 1111-1115. doi: 10.3724/SP.J.1146.2008.01755
引用本文: 高韬, 刘正光, 张军, 岳士弘. 基于特征点的多运动目标跟踪[J]. 电子与信息学报, 2010, 32(5): 1111-1115. doi: 10.3724/SP.J.1146.2008.01755
Gao Tao, Liu Zheng-guang, Zhang Jun, Yue Shi-hong. Feature Points Based Multiple Moving Targets Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1111-1115. doi: 10.3724/SP.J.1146.2008.01755
Citation: Gao Tao, Liu Zheng-guang, Zhang Jun, Yue Shi-hong. Feature Points Based Multiple Moving Targets Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1111-1115. doi: 10.3724/SP.J.1146.2008.01755

基于特征点的多运动目标跟踪

doi: 10.3724/SP.J.1146.2008.01755

Feature Points Based Multiple Moving Targets Tracking

  • 摘要: 该文针对智能监控的需求,提出基于特征的多运动目标跟踪算法。通过自适应Marr小波核函数背景建模算法,在冗余离散小波域进行多运动目标识别。运动跟踪采用SIFT特征粒子滤波算法,并采用队列链表法记录多运动目标之间的数据关联,在提高识别准确率的同时降低了运算的复杂度。实际测试表明,该算法对于多运动目标识别跟踪具有更优越的实时性和抗遮挡性,在智能监控领域具有较广泛的应用前景。
  • Betke M, Haritaoglu E, and Davis L S. Real-time multiple vehicle detection and tracking from a moving vehicle [J].Machine Vision and Applications.2000, 12(2):69-83[2]Lin Ming-xiu and Xu Xin-he. Multiple vehicle visual tracking from a moving vehicle [C][J].Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, Jinan, China.2006, 2:373-378[3]孙志海, 朱善安. 多视频运动对象实时分割及跟踪技术[J]. 浙江大学学报(工学版), 2008, 42(9): 1631-1635.Sun Zhi-hai and Zhu Shan-an. Real-time segmentation and tracking technique of multiple moving objects in video sequence [J]. Journal of Zhejiang University (Engineering Science), 2008, 42(9): 1631-1635.[4]Lin Shin-ping, Chen Yuan-hsin, and Wu Bing-fei. Real-time multiple vehicle detection and tracking system with prior occlusion detection and resolution, and prior queue detection and resolution [C]. Proceedings of 18th International Conference on Pattern Recognition(ICPR), Hong Kong, 2006, 1: 828-831.[5]Jin Yong-gang and Mokhtarian F. Variational particle filter for multi-object tracking [C]. Proceedings of IEEE 11th International Conference on Computer Vision (ICCV), Rio de Janeiro, Brazil, 2007: 1-8.[6]Pinkiewicz T, Williams R, and Purser J. Application of the particle filter to tracking of fish in aquaculture research [C]. Proceedings of Digital Image Computing: Techniques and Applications (DICTA), Canberra, 2008: 457-464.Gao Tao and Liu Zheng-guang. Moving video object segmentation based on redundant wavelet transform [C]. Proceedings of the IEEE International Conference on Information and Automation, Zhangjiajie, China, 2008: 156-160.[7]Lowe D G. Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision.2004, 60(2):91-110[8]Nummiaro K. An adaptive color-based particle filter[J].Image and Vision Computing.2003, 21(1):99-110[9]Reckleitis I. A particle filter tutorial for mobile robot localization [C]. Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 2003, 42: 1-36.
  • 加载中
计量
  • 文章访问数:  3776
  • HTML全文浏览量:  94
  • PDF下载量:  2051
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-22
  • 修回日期:  2010-03-04
  • 刊出日期:  2010-05-19

目录

    /

    返回文章
    返回