高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在小样本条件下直接LDA的理论分析

赵武锋 沈海斌 严晓浪

赵武锋, 沈海斌, 严晓浪. 在小样本条件下直接LDA的理论分析[J]. 电子与信息学报, 2009, 31(11): 2632-2636. doi: 10.3724/SP.J.1146.2008.01629
引用本文: 赵武锋, 沈海斌, 严晓浪. 在小样本条件下直接LDA的理论分析[J]. 电子与信息学报, 2009, 31(11): 2632-2636. doi: 10.3724/SP.J.1146.2008.01629
Zhao Wu-feng, Shen Hai-bin, Yan Xiao-lang. Theoretical Analysis of Direct LDA in Small Sample Size Problem[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2632-2636. doi: 10.3724/SP.J.1146.2008.01629
Citation: Zhao Wu-feng, Shen Hai-bin, Yan Xiao-lang. Theoretical Analysis of Direct LDA in Small Sample Size Problem[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2632-2636. doi: 10.3724/SP.J.1146.2008.01629

在小样本条件下直接LDA的理论分析

doi: 10.3724/SP.J.1146.2008.01629

Theoretical Analysis of Direct LDA in Small Sample Size Problem

  • 摘要: 直接线性鉴别分析(DLDA)是一种以克服小样本问题而提出的LDA扩展方法,被声明利用了包含类内散布矩阵零空间外的所有信息。然而,很多反例表明事实并非如此。为了更深入地了解DLDA的特性,该文从理论上对其进行了分析,得出结论:基于传统Fisher准则的DLDA几乎没利用零空间,将丢失一些有用的鉴别信息;而基于广义Fisher准则的DLDA,若满足一定条件(在高维小样本数据应用中一般都满足)且最优鉴别矢量正交约束,则其等价于零空间LDA和正交LDA。在人脸数据库ORL和YALE上的比较实验结果亦与理论分析一致。
  • Krzanowski W J, Jonathan P, and Mccarthy W V, et al..Discriminant analysis with singular covariance matrices:methods and applications to spectroscopic data. AppliedStatistics, 1995, 44(11): 101-115.[2]Belhumeur P N, Hespanha J P, and Kriegman D J.Eigenfaces vs. Fisherfaces: Recognition using class specificlinear projection. IEEE Transactions on Pattern Analysisand Machine Intelligence, 1997, 19(7): 711-720.[3]Yu Hua and Yang Jie. A direct LDA algorithm for highdimensionaldata-with application to face recognition[J].Pattern Recognition.2001, 34(10):2067-2070[4]Chen L F, Liao H Y M, and Ko M T, et al.. A newLDA-based face recognition system which can solve thesmall sample size problem[J].Pattern Recognition.2000,33(10):1713-1726[5]Huang R, Liu Q, and Lu H, et al.. Solving the small samplesize problem of LDA. Proceedings of InternationalConference on Pattern Recognition, USA, 2002, 3: 29-32.[6]Ye Jie-ping. Characterization of a family of algorithms forgeneralized discriminant analysis on undersampledproblems. Journal of Machine Learning Research, 2005,6(Apr.): 483-502.[7]Ye Jie-ping and Xiong Tao. Computational and theoreticalanalysis of null space and orthogonal linear discriminantanalysis. Journal of Machine Learning Research, 2006,7(Jul.): 1183-1204.[8]Zheng Yujie, Guo Zhibo, and Yang Jian, et al.. DLDA/QR:A robust direct LDA algorithm for face recognition and itstheoretical foundation[J].Lecture Notes in Computer Science.2007, 4426:379-387[9]Park C H and Lee M. On applying linear discriminantanalysis for multi-labeled problems[J].Pattern RecognitionLetter.2008, 29(7):878-887[10]厉小润, 赵光宙, 赵辽英. 改进的核直接Fisher描述分析与人脸识别. 浙江大学学报(工学版), 2008, 42(4): 583-589.Li Xiao-run, Zhao Guang-zhou, and Zhao Liao-ying.Improved kernel direct Fisher discriminant analysis andface recognition. Journal of Zhejiang University(Engineering Science), 2008, 42(4): 583-589.[11]Cevikalp H, Neamtu M, and Wilkes M, et al..Discriminative common vector method with kernels[J].IEEETransactions on Neural Networks.2006, 17(6):1550-1565[12]Park H and Park C H. A comparison of generalized lineardiscriminant analysis algorithms[J].Pattern Recognition.2008, 41(3):1083-1097[13]Gao Hui and Davis J W. Why direct LDA is not equivalentto LDA[J].Pattern Recognition.2006, 39(5):1002-1006
  • 加载中
计量
  • 文章访问数:  3771
  • HTML全文浏览量:  160
  • PDF下载量:  1219
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-05
  • 修回日期:  2009-06-01
  • 刊出日期:  2009-11-19

目录

    /

    返回文章
    返回