高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于形状统计模型的多类目标自动识别方法

孙显 王宏琦 杨志峰

孙显, 王宏琦, 杨志峰. 基于形状统计模型的多类目标自动识别方法[J]. 电子与信息学报, 2009, 31(11): 2626-2631. doi: 10.3724/SP.J.1146.2008.01422
引用本文: 孙显, 王宏琦, 杨志峰. 基于形状统计模型的多类目标自动识别方法[J]. 电子与信息学报, 2009, 31(11): 2626-2631. doi: 10.3724/SP.J.1146.2008.01422
Sun Xian, Wang Hong-qi, Yang Zhi-feng. Automatic Multi-categorical Objects Recognition Using Shape Statistical Models[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2626-2631. doi: 10.3724/SP.J.1146.2008.01422
Citation: Sun Xian, Wang Hong-qi, Yang Zhi-feng. Automatic Multi-categorical Objects Recognition Using Shape Statistical Models[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2626-2631. doi: 10.3724/SP.J.1146.2008.01422

基于形状统计模型的多类目标自动识别方法

doi: 10.3724/SP.J.1146.2008.01422
基金项目: 

国家自然科学基金(40871209),国家863计划项目(2006AA12Z149)和中国科学院电子学研究所青年创新基金资助课题

Automatic Multi-categorical Objects Recognition Using Shape Statistical Models

  • 摘要: 形状是人类视觉系统分析和识别目标的基础。针对现有方法的不足,该文提出了一种新的基于形状统计模型的多类目标自动识别方法。该模型定义形状基元对作为特征描述子,从样本图像中抽取典型基元对,聚类量化后组成形状字典。然后综合分析各类信息,通过无监督学习来统计目标的特征分布状况,构建类别形状模型。快速定位目标区域并辨识对象类别后,可结合图像分割获取精确形状。实验结果表明,该方法能准确、高效地提取多种类型和复杂结构的目标,较好解决了噪声干扰、旋转侧偏等问题,具有较强的实用价值。
  • Leibe B, Leonardis A, and Schiele B. Robust object detectionwith interleaved categorization and segmentation [J].International Journal of Computer Vision Special Issue onLearning for Recognition and Recognition for Learning, 2008,77(1): 259-289.[2]Felzenszwalb P F and Schwartz J D. Hierarchical matching ofdeformable shapes [C]. Proceedings of IEEE Conference onComputer Vision and Pattern Recognition, Minnesota, USA,2007: 1-8.[3]Zhang X Q, Guo M M, and Tang Y. A new geometric featureshape descriptor [J]. Computer Engineering and Applications,2007, 43(29): 90-92.[4]Fergus R, Perona P, and Zisserman A. Weakly supervisedscale-invariant learning of models for visual recognition [J].International Journal of Computer Vision.2007, 71(3):273-303[5]Opelt A, Pinz A, and Zisserman A. Incremental learning ofobject detectors using a visual shape alphabet [C].Proceedings of IEEE Conference on Computer Vision andPattern Recognition, New York, USA, 2006: 3-10.[6]Shotton J, Blake A, and Cipolla R. Multi-scale categoricalobject recognition using contour fragments [J].IEEETransactions on Pattern Analysis and Machine Intelligence.2008, 30(7):1270-1281[7]Mahamud S, Williams L R, Thornber K, and Xu K.Segmentation of multiple salient closed contours from realimages [J].IEEE Transactions on Pattern Analysis andMachine Intelligence.2003, 25(4):433-444[8]Kumar S. Models for learning spatial interactions in naturalimages for context-based classification [D]. [Ph.D.dissertation], The Robotics Institute, Carnegie MellonUniversity, 2005.[9]Wu Tao, Ding Xiao-qing, and Wang Sheng-jin. Videotracking using improved chamfer matching and particle filter[C]. Proceedings of IEEE Conference on ComputationalIntelligence and Multimedia Applications, Sivakasi, TamilNadu, 2007: 169-173.Maitre H, Kyrgyzov I, and Campedel M. Kernel mdl todetermine the number of clusters [C]. Proceedings of IEEEConference on Machine Learning and Data Mining in PatternRecognition, Leipzig, Germany, 2007: 203-217.[10]Hofmann T. Unsupervised learning by probabilistic latentsemantic analysis [J].Machine Learning.2001, 42(2):177-196[11]Dempster A, Laird N, and Rubin D. Maximum likelihoodform incomplete data via the EM algorithm [J]. Journal of theRoyal Statistical Scotiety, 1977, 39(1): 1-38.[12]Lempitsky V, Rother C, and Blake A. LogCut-efficient graphcut optimization for markov random fields [C]. Proceedings ofIEEE Conference on Computer Vision, Rio de Janeiro, Brazil,2007: 1-8.
  • 加载中
计量
  • 文章访问数:  3321
  • HTML全文浏览量:  103
  • PDF下载量:  739
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-11-03
  • 修回日期:  2009-06-25
  • 刊出日期:  2009-11-19

目录

    /

    返回文章
    返回