高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多元假设检验GMPHD轨迹跟踪

黄志蓓 孙树岩 吴健康

黄志蓓, 孙树岩, 吴健康. 多元假设检验GMPHD轨迹跟踪[J]. 电子与信息学报, 2010, 32(6): 1289-1294. doi: 10.3724/SP.J.1146.2008.01387
引用本文: 黄志蓓, 孙树岩, 吴健康. 多元假设检验GMPHD轨迹跟踪[J]. 电子与信息学报, 2010, 32(6): 1289-1294. doi: 10.3724/SP.J.1146.2008.01387
Huang Zhi-bei, Sun Shu-yan, Wu Jian-kang. Multiple Hypotheses Detection with Gaussian Mixture Probability Hypothesis Density Filter for Multi-target Trajectory Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1289-1294. doi: 10.3724/SP.J.1146.2008.01387
Citation: Huang Zhi-bei, Sun Shu-yan, Wu Jian-kang. Multiple Hypotheses Detection with Gaussian Mixture Probability Hypothesis Density Filter for Multi-target Trajectory Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1289-1294. doi: 10.3724/SP.J.1146.2008.01387

多元假设检验GMPHD轨迹跟踪

doi: 10.3724/SP.J.1146.2008.01387

Multiple Hypotheses Detection with Gaussian Mixture Probability Hypothesis Density Filter for Multi-target Trajectory Tracking

  • 摘要: 由于在军事和民事领域逐步广泛的应用,数目不定的多目标跟踪技术正受到越来越多的关注。概率假设密度(PHD)滤波方法,特别是具有闭式递归的高斯混合概率假设密度(GMPHD)技术,在噪声和漏警等影响下仍能形成优越的群目标跟踪性能。然而PHD滤波器并不能实现多目标航迹跟踪,而其与传统数据互联的结合,复杂度高且跟踪效果不尽如人意。在该文中,各目标的航迹信息以假设形式表述,数据互联则是通过使用经典的多元假设检测方法判决假设矩阵实现。其与GMPHD的结合不仅实现了数据互联和轨迹管理,还因为积累时间信息大大降低了杂波干扰的影响。实验结果证明,该算法可以对多个目标所形成的轨迹实施正确跟踪,同时,计算量的大幅度降低带来了跟踪系统可实现性的提高。
  • Bar-Shalom Y. Dimensionless score function for multiple hypothesis tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007 43(1): 392-400.[2]Blackman S. Multiple hypothesis tracking for multiple target tracking[J].IEEE Aerospace and Electronic Systems.2004, 19(1):5-18[3]Fortunato E.[J].Kreamer W, and Mori S, et al.. Generalized Murtys algorithm with application to multiple hypothesis tracking[C]. Information Fusion.2007,:10-[4]Hall David L and Llinas James. Handbook of Multisensor Data Fusion[M]. FL: CRC Press, 2001: 211-241.[5]Fortmann T E, Bar-Shalom Y, and Scheffe M. Sonar tracking of multiple targets using joint probabilistic data association[J].IEEE Journal of Oceanic Engineering.1983, 8(7):173-184[6]Mahler R P S. Statistical Multisource-Multitarget Information Fusion[M]. Norwood, MA, Artech House, 2007: 343-394.[7]Mahler R P S. An introduction to multisource-multitarget statistics and its applications. Technical Monograph, Lockheed Martin, Eagan MN, 2000.[8]Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments[J].IEEE Transaction on Aerospace and Electronic Systems.2003, 39(4):1152-1178[9]Mahler R P S. PHD filter of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543.[10]Sidenbladh H. Multi-target particle filtering for the probability hypothesis density[C]. Proc. International Conference on Information Fusion, Cairns, Australia, 2003: 800-806.[11]Vo B N, Singh S, and Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets[J].IEEE Transactions on Aerospace and Electronic Systems.2005, 41(4):1224-1245[12]Vo B N and Ma W K. The Gaussian mixture probability hypothesis density filter[J].IEEE Transactions on Signal Processing.2006, 54(11):4091-4104[13]Vo B T, Vo B, and Cantoni A. Analytic implementations of the Cardinalized Probability Hypothesis Density Filter[J].IEEE Transactions on Signal Processing.2007, 55(7):3553-3567[14]Lin L, Bar-Shalom Y, and Kirubarajan T. Track labeling and PHD filter for multitarget tracking[J].IEEE Transactions on Aerospace and Electronic Systems.2006, 42(3):778-795[15]Panta K, Vo B N, and Singh S. Novel data association schemes for probability hypothesis density filter[J].IEEE Transactions on Aerospace and Electronic Systems.2007, 43(2):556-570[16]Hoffman J and Mahler R. Multi-target miss distance via optimal assignment[J].IEEE Transactions on Systems, Man, and Cyberneticas-PartA.2004, 34(3):327-336
  • 加载中
计量
  • 文章访问数:  3615
  • HTML全文浏览量:  95
  • PDF下载量:  1031
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-10-27
  • 修回日期:  2010-04-22
  • 刊出日期:  2010-06-19

目录

    /

    返回文章
    返回