高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于广义典型相关分析的仿射不变特征提取方法

张洁玉 陈强 白小晶 孙权森 夏德深

张洁玉, 陈强, 白小晶, 孙权森, 夏德深. 基于广义典型相关分析的仿射不变特征提取方法[J]. 电子与信息学报, 2009, 31(10): 2465-2469. doi: 10.3724/SP.J.1146.2008.01344
引用本文: 张洁玉, 陈强, 白小晶, 孙权森, 夏德深. 基于广义典型相关分析的仿射不变特征提取方法[J]. 电子与信息学报, 2009, 31(10): 2465-2469. doi: 10.3724/SP.J.1146.2008.01344
Zhang Jie-yu, Chen Qiang, Bai Xiao-jing, Sun Quan-sen, Xia De-shen. Affine Invariant Feature Extraction Algorithm Based on Generalized Canonical Correlation Analysis[J]. Journal of Electronics & Information Technology, 2009, 31(10): 2465-2469. doi: 10.3724/SP.J.1146.2008.01344
Citation: Zhang Jie-yu, Chen Qiang, Bai Xiao-jing, Sun Quan-sen, Xia De-shen. Affine Invariant Feature Extraction Algorithm Based on Generalized Canonical Correlation Analysis[J]. Journal of Electronics & Information Technology, 2009, 31(10): 2465-2469. doi: 10.3724/SP.J.1146.2008.01344

基于广义典型相关分析的仿射不变特征提取方法

doi: 10.3724/SP.J.1146.2008.01344
基金项目: 

国家自然科学基金(60773172)和江苏省博士后基金(AD41158)资助课题

Affine Invariant Feature Extraction Algorithm Based on Generalized Canonical Correlation Analysis

  • 摘要: 该文结合广义典型相关分析(GCCA)理论,提出了一种新的图像仿射不变特征提取方法。首先,基于多尺度自卷积变换(MSA)构造了一组新的变换量多尺度自卷积熵(MSAE)。然后证明了该熵具有仿射不变性;再利用GCCA将MSA和MSAE变换值作为两种特征进行融合,得到具有更丰富图像信息的组合特征。最后利用MSA,MSAE和组合特征,结合最近距离分类器分别对视点变换图像以及加噪声、加部分遮挡视点变换图像进行分类识别实验。结果表明,组合特征得到了最高的正确识别率,MSAE次之,MSA最低。
  • MingKuei H. Visual pattern recognition by momentinvariants [J]. IEEE Transactions on Information Theory,1962, 8(2): 179-187.[2]Zahn C T and Roskies R Z. Fourier descriptors for planeclosed curves [J].IRE Transactions on Computer.1972, 21(3):269-281[3]Teague M. Image analysis via the general theory of moments[J].Journal of the Optical Society of America.1980, 70(8):920-930[4]Resnick J. The radon transforms and some of its applications[J].IEEE Transactions on Acoustics, Speech and SignalProcessing.1985, 33(1):338-339[5]Xiong H, Zhang T, and Moon Y S. A translation- and scaleinvariantadaptive wavelet transform [J].IEEE Transactionson Image Processing.2000, 9(12):2100-2108[6]夏永泉, 刘正东, 杨静宇. 不变矩方法在区域匹配中的应用[J].计算机辅助设计与图形学学报, 2005, 17(10): 2152-2156.Xia Yong-quan, Liu Zheng-dong, and Yang Jing-yu.Application of moment invariant approach in region matching[J]. Journal of Computer-aided Design Computer Graphics,2005, 17(10): 2152-2156.[7]Rahtu E, Salo M, and Heikkil. J. Affine invariant patternrecognition using multiscale autoconvolution[J].IEEETransactions on Pattern Analysis and Machine Intelligence.2005, 27(6):908-918[8]Petrou M and Kadyrov A. Affine invariant features from thetrace transform [J].IEEE Transactions on Pattern Analysisand Machine Intelligence.2004, 26(1):30-44[9]蔡红苹, 雷琳, 陈涛等. 一种通用的仿射不变特征区域提取方法[J]. 电子学报, 2008, 36(4): 672-678.Cai Hong-ping, Lei Lin, and Chen Tao, et al.. A generalapproach for extracting affine invariant regions[J]. ActaElectronica Sinica, 2008, 36(4): 672-678.[10]刘小军, 杨杰, 刘惠等. 基于主成分分析的仿射不变特征图像匹配方法[J]. 系统仿真学报, 2008, 20(4): 977-980.Liu Xiao-jun, Yang Jie, and Liu Hui, et al.. Affine invariantfeatures image matching approach based on principalcomponents analysis [J]. Journal of System Simulation, 2008,20(4): 977-980.[11]Kannala J, Rahtu E, and Heikkil. J. Affine registration withmulti-scale autoconvolution[C]. Proc. InternationalConference on Image Processing, Genoa, 2005, 3: 1064-1067.[12]Rahtu E, Salo M, and Heikkil. J. Multiscale autoconvolutionhistograms for affine invariant pattern recognition[C]. Proc.16th British Machine Vision Conference, Edinburgh, 2006, 3:1039-1048.[13]唐涛, 粟毅, 陈涛等. 一种新的图像局部仿射不变特征提取方法[J]. 计算机仿真, 2007, 7(24): 229-234.Tang Tao, Su Yi, and Chen Tao, et al.. A novel method forlocal affine invariant feature extraction [J]. ComputerSimulation, 2007, 7(24): 229-234.[14]徐学强, 汪渤, 于家城等. 一种新型不变矩在图像识别中的应用[J]. 光学技术, 2007, 33(4): 580-583.Xu Xue-qiang, Wang Bo, and Yu Jia-cheng, et al..Application of a new invariant moments on image recognition[J]. Optical Technique, 2007, 33(4): 580-583.[15]Kim T-K, Kittler J, and Cipolla R. Discriminative learningand recognition of image set classes using canonicalcorrelations[J]. IEEE Transactions on PAMI, 2007, 29(6):1005-1018.[16]洪泉, 陈松灿, 倪雪蕾. 子模式典型相关分析及其在人脸识别中的应用[J]. 自动化学报, 2008, 34(1): 21-30.Hong Quan, Chen Song-can, and Ni Xue-lei. Sub-patterncanonical correlation analysis with application in facerecognition[J]. Acta Automatica Sinica, 2008, 34(1): 21-30.[17]Sun Q S, Zeng S G, Liu Y, Heng P A, and Xia D S. A newmethod of feature fusion and its application in imagerecognition[J].Pattern Recognition.2005, 38(12):2437-2448[18]孙权森, 曾生根, 王平安等. 典型相关分析的理论及其在特征融合中的应用[J]. 计算机学报, 2005, 28(9): 1524-1533.Sun Quan-sen, Zeng Sheng-gen, and Wang Ping-an, et al..The theory of canonical correlation analysis and itsapplication to feature fusion[J]. Chinese Journal of Computer,2005, 28(9): 1524-1533.[19]Sun Q S, Heng P A, Jin Z, and Xia D S. Face recognitionbased on generalized canonical correlation analysis[C].International Conference on Intelligent Computing(Hefei,China), Lecture Notes in Computer Science, Springer-Verlag,Heidelberg, Berlin, 2005, 3645: 958-967.[20]雷琳, 蔡红苹, 唐涛等. 基于MSA特征的遥感图像多目标关联算法[J]. 遥感学报, 2008, 12(4): 586-592.Lei Lin, Cai Hong-ping, and Tang Tao, et al.. A MSAfeature-based multiple targets association algorithm inremote sensing images[J]. Journal of Remote Sensing, 2008,12(4): 586-592.[21]Heikkila J. Pattern matching with affine momentdescriptors[J].Pattern Recognition.2004, 37(9):1825-1834[22]Yang Z and Cohen F. Cross-weighted moments and affineinvariants for image registration and matching [J].IEEETransactions on Pattern Analysis and Machine Intelligence.1999, 21(8):804-814[23] Columbia University, Coil-100 image database. Http://www1.cs.columbia.edu/CAVE/ software/softlib/coil-100.php,2008, 8.
  • 加载中
计量
  • 文章访问数:  3882
  • HTML全文浏览量:  90
  • PDF下载量:  1006
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-10-14
  • 修回日期:  2009-03-23
  • 刊出日期:  2009-10-19

目录

    /

    返回文章
    返回